#include <bits/stdc++.h> #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) #define st first #define nd second using namespace std; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename \ enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef LOCAL ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " template <typename T> inline void mini(T &a4, T b4) { a4 = min(a4, b4); } template <typename T> inline void maxi(T &a4, T b4) { a4 = min(a4, b4); } using ll = long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using vi = vector<int>; using vll = vector<ll>; constexpr int kLeastBits = 9; constexpr int kBlockSize = 1 << kLeastBits; constexpr int kBlockMask = kBlockSize - 1; struct DynamicPrefSum { vi in_block; vi out_block; DynamicPrefSum(int n) { ++n; in_block.resize(n + kBlockSize); out_block.resize(n / kBlockSize + 1); } void Inc(int loc) { for (int i = loc + 1; i & kBlockMask; ++i) { ++in_block[i]; } const int nblocks = SZ(out_block); for (int i = loc / kBlockSize + 1; i < nblocks; ++i) { ++out_block[i]; } } int GetPref(int sz) { return in_block[sz] + out_block[sz >> kLeastBits]; } }; struct ConnectedSol { vi a_to_b, b_to_a; vi a_to_minb, b_to_mina; vector<vi> children; vi depth; vi parent; vi visit_order; vi endpoint_to_introduce; vi result_endpoint_idx; int n; struct TreeSegment { // Smutny, ale potrzebny hack: nie potrzebujemy (a, b) oraz sol // w tym samym czasie, więc każemy im korzystać z tej samej pamięci. union { struct { int a = -1, b = -1; }; ll sol; }; friend ostream &operator<<(ostream &os, const TreeSegment &ts) { os << "Segment(a=" << ts.a << ", b=" << ts.b << ": sol=" << ts.sol << ")"; return os; } }; void DfsChildren(int v) { for (int s : children[v]) { depth[s] = depth[v] + 1; parent[s] = v; DfsChildren(s); } } void MakeTree() { children.resize(2 * n); children[0].push_back(n); for (int i = 1; i < n; ++i) { children[b_to_mina[i]].push_back(n + i); children[n + a_to_minb[i]].push_back(i); } depth.resize(2 * n); parent.resize(2 * n, -1); endpoint_to_introduce.resize(2 * n, -1); DfsChildren(0); debug() << imie(depth); for (int i = 0; i < n; ++i) { const int j = n + a_to_b[i]; const int da = depth[i]; const int db = depth[j]; assert(abs(da - db) == 1); if (da < db) { endpoint_to_introduce[i] = j; } else { endpoint_to_introduce[j] = i; } } visit_order.resize(2 * n); iota(ALL(visit_order), 0); sort(ALL(visit_order), [&](int lhs, int rhs) { return make_pair(depth[lhs], lhs) > make_pair(depth[rhs], rhs); }); debug() << imie(visit_order); } vector<TreeSegment> tree_segments; vi tree_segments_pnt; void CreateTreeSegments() { vector<int> endpt_to_id(2 * n, -1); vector<int> endpts_to_clear; vector<vi> endpts_by_hi(2 * n); result_endpoint_idx.resize(n, -1); // Trochę hack. Chcę uniknąć problemów w sytuacji, w której liczba // odcinków na vectorze przekroczy 2^25 (prawdopodobnie to sie nie stanie, // ale nigdy nie można być pewnym). // Już prawie na pewno ta liczba nie powinna przekroczyć 44'444'444, prawda? // Sam umiem wygenerować max. ok. 24,5 mln. if (n > 100'000) { tree_segments.reserve(44'444'444); tree_segments_pnt.reserve(44'444'444); } auto AddLowEndpoint = [&](int hi_endpt, int lo_endpt) { if (endpt_to_id[lo_endpt] == -1) { const int new_id = SZ(tree_segments); debug() << "new segment" << imie(new_id) << imie(hi_endpt) << imie(lo_endpt); tree_segments.emplace_back(); tree_segments_pnt.push_back(-1); tie(tree_segments[new_id].a, tree_segments[new_id].b) = minmax(hi_endpt, lo_endpt); endpt_to_id[lo_endpt] = new_id; endpts_to_clear.push_back(lo_endpt); endpts_by_hi[hi_endpt].push_back(new_id); } return endpt_to_id[lo_endpt]; }; auto ClearEndpoints = [&]() { for (int v : endpts_to_clear) { endpt_to_id[v] = -1; } endpts_to_clear.clear(); }; for (int hi_endpt : visit_order) { if (endpoint_to_introduce[hi_endpt] != -1) { const int lo_endpt = endpoint_to_introduce[hi_endpt]; const int a = min(hi_endpt, lo_endpt); const int seg_idx = AddLowEndpoint(hi_endpt, endpoint_to_introduce[hi_endpt]); result_endpoint_idx[a] = seg_idx; } for (int hi_child : children[hi_endpt]) { for (int seg_child : endpts_by_hi[hi_child]) { const int lo_child = tree_segments[seg_child].a ^ tree_segments[seg_child].b ^ hi_child; const int lo_endpt = parent[lo_child]; const int seg_idx = AddLowEndpoint(hi_endpt, lo_endpt); tree_segments_pnt[seg_child] = seg_idx; } endpts_by_hi[hi_child].clear(); endpts_by_hi[hi_child].shrink_to_fit(); } ClearEndpoints(); } //~ cerr << SZ(tree_segments) << " " << tree_segments.capacity() << " " << sizeof(TreeSegment) << "\n"; debug() << imie(tree_segments); } void ComputeMiniSols() { vector<vi> segments_by_a(n); for (int i = 0; i < SZ(tree_segments); ++i) { segments_by_a[tree_segments[i].a].push_back(i); } DynamicPrefSum pref_sum(n); for (int a = 0; a < n; ++a) { for (int seg_idx : segments_by_a[a]) { const int b = tree_segments[seg_idx].b - n; const int mini_sol = pref_sum.GetPref(b); tree_segments[seg_idx].sol = mini_sol; debug() << imie(a) << imie(b) << imie(mini_sol); } pref_sum.Inc(a_to_b[a]); } } void PropagateSols() { const int S = SZ(tree_segments); for (int i = S - 1; i >= 0; --i) { auto &seg = tree_segments[i]; const int pnt = tree_segments_pnt[i]; if (pnt != -1) { seg.sol += tree_segments[pnt].sol; } debug() << imie(seg); } } vll GatherAnswers() { vll ans(n, -1); for (int a = 0; a < n; ++a) { const int seg_idx = result_endpoint_idx[a]; ans[a] = tree_segments[seg_idx].sol; } return ans; } vll Solve(const vi &elems) { debug() << imie(elems); n = SZ(elems); a_to_b.resize(n); b_to_a.resize(n); for (int i = 0; i < n; ++i) { a_to_b[i] = elems[i]; b_to_a[elems[i]] = i; } a_to_minb.resize(n); b_to_mina.resize(n); for (int i = n - 1; i >= 0; --i) { a_to_minb[i] = a_to_b[i]; if (i < n - 1) { mini(a_to_minb[i], a_to_minb[i + 1]); } b_to_mina[i] = b_to_a[i]; if (i < n - 1) { mini(b_to_mina[i], b_to_mina[i + 1]); } } debug() << imie(a_to_minb); debug() << imie(b_to_mina); MakeTree(); CreateTreeSegments(); ComputeMiniSols(); PropagateSols(); return GatherAnswers(); } }; vll SolveSegment(vi elems) { debug() << "subroutine" << imie(elems); const int n = SZ(elems); vll answers(n, n - 1); vll ans_left = ConnectedSol{}.Solve(elems); reverse(ALL(elems)); for (int &x : elems) { x = (n - 1) - x; } vll ans_right = ConnectedSol{}.Solve(elems); reverse(ALL(ans_right)); for (int i = 0; i < n; ++i) { answers[i] += ans_left[i] + ans_right[i]; } return answers; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(11); cerr << fixed << setprecision(6); int n; cin >> n; vi elems(n); for (int &x : elems) { cin >> x; --x; } vi splits{0}; int max_pref = -1; for (int i = 0; i < n; ++i) { max_pref = max(max_pref, elems[i]); if (max_pref == i) { splits.push_back(i + 1); } } vll answers(n); for (int i = 1; i < SZ(splits); ++i) { const int L = splits[i - 1]; const int R = splits[i]; vi subsegment(elems.begin() + L, elems.begin() + R); for (int &x : subsegment) { x -= L; } vll sub_answers = SolveSegment(subsegment); for (int j = L; j < R; ++j) { answers[j] += sub_answers[j - L]; } } for (ll ans : answers) { cout << ans << " "; } cout << "\n"; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | #include <bits/stdc++.h> #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) #define st first #define nd second using namespace std; #define sim template < class c #define ris return * this #define dor > debug & operator << #define eni(x) sim > typename \ enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) { sim > struct rge { c b, e; }; sim > rge<c> range(c i, c j) { return rge<c>{i, j}; } sim > auto dud(c* x) -> decltype(cerr << *x, 0); sim > char dud(...); struct debug { #ifdef LOCAL ~debug() { cerr << endl; } eni(!=) cerr << boolalpha << i; ris; } eni(==) ris << range(begin(i), end(i)); } sim, class b dor(pair < b, c > d) { ris << "(" << d.first << ", " << d.second << ")"; } sim dor(rge<c> d) { *this << "["; for (auto it = d.b; it != d.e; ++it) *this << ", " + 2 * (it == d.b) << *it; ris << "]"; } #else sim dor(const c&) { ris; } #endif }; #define imie(...) " [" << #__VA_ARGS__ ": " << (__VA_ARGS__) << "] " template <typename T> inline void mini(T &a4, T b4) { a4 = min(a4, b4); } template <typename T> inline void maxi(T &a4, T b4) { a4 = min(a4, b4); } using ll = long long; using pii = pair<int,int>; using pll = pair<ll,ll>; using vi = vector<int>; using vll = vector<ll>; constexpr int kLeastBits = 9; constexpr int kBlockSize = 1 << kLeastBits; constexpr int kBlockMask = kBlockSize - 1; struct DynamicPrefSum { vi in_block; vi out_block; DynamicPrefSum(int n) { ++n; in_block.resize(n + kBlockSize); out_block.resize(n / kBlockSize + 1); } void Inc(int loc) { for (int i = loc + 1; i & kBlockMask; ++i) { ++in_block[i]; } const int nblocks = SZ(out_block); for (int i = loc / kBlockSize + 1; i < nblocks; ++i) { ++out_block[i]; } } int GetPref(int sz) { return in_block[sz] + out_block[sz >> kLeastBits]; } }; struct ConnectedSol { vi a_to_b, b_to_a; vi a_to_minb, b_to_mina; vector<vi> children; vi depth; vi parent; vi visit_order; vi endpoint_to_introduce; vi result_endpoint_idx; int n; struct TreeSegment { // Smutny, ale potrzebny hack: nie potrzebujemy (a, b) oraz sol // w tym samym czasie, więc każemy im korzystać z tej samej pamięci. union { struct { int a = -1, b = -1; }; ll sol; }; friend ostream &operator<<(ostream &os, const TreeSegment &ts) { os << "Segment(a=" << ts.a << ", b=" << ts.b << ": sol=" << ts.sol << ")"; return os; } }; void DfsChildren(int v) { for (int s : children[v]) { depth[s] = depth[v] + 1; parent[s] = v; DfsChildren(s); } } void MakeTree() { children.resize(2 * n); children[0].push_back(n); for (int i = 1; i < n; ++i) { children[b_to_mina[i]].push_back(n + i); children[n + a_to_minb[i]].push_back(i); } depth.resize(2 * n); parent.resize(2 * n, -1); endpoint_to_introduce.resize(2 * n, -1); DfsChildren(0); debug() << imie(depth); for (int i = 0; i < n; ++i) { const int j = n + a_to_b[i]; const int da = depth[i]; const int db = depth[j]; assert(abs(da - db) == 1); if (da < db) { endpoint_to_introduce[i] = j; } else { endpoint_to_introduce[j] = i; } } visit_order.resize(2 * n); iota(ALL(visit_order), 0); sort(ALL(visit_order), [&](int lhs, int rhs) { return make_pair(depth[lhs], lhs) > make_pair(depth[rhs], rhs); }); debug() << imie(visit_order); } vector<TreeSegment> tree_segments; vi tree_segments_pnt; void CreateTreeSegments() { vector<int> endpt_to_id(2 * n, -1); vector<int> endpts_to_clear; vector<vi> endpts_by_hi(2 * n); result_endpoint_idx.resize(n, -1); // Trochę hack. Chcę uniknąć problemów w sytuacji, w której liczba // odcinków na vectorze przekroczy 2^25 (prawdopodobnie to sie nie stanie, // ale nigdy nie można być pewnym). // Już prawie na pewno ta liczba nie powinna przekroczyć 44'444'444, prawda? // Sam umiem wygenerować max. ok. 24,5 mln. if (n > 100'000) { tree_segments.reserve(44'444'444); tree_segments_pnt.reserve(44'444'444); } auto AddLowEndpoint = [&](int hi_endpt, int lo_endpt) { if (endpt_to_id[lo_endpt] == -1) { const int new_id = SZ(tree_segments); debug() << "new segment" << imie(new_id) << imie(hi_endpt) << imie(lo_endpt); tree_segments.emplace_back(); tree_segments_pnt.push_back(-1); tie(tree_segments[new_id].a, tree_segments[new_id].b) = minmax(hi_endpt, lo_endpt); endpt_to_id[lo_endpt] = new_id; endpts_to_clear.push_back(lo_endpt); endpts_by_hi[hi_endpt].push_back(new_id); } return endpt_to_id[lo_endpt]; }; auto ClearEndpoints = [&]() { for (int v : endpts_to_clear) { endpt_to_id[v] = -1; } endpts_to_clear.clear(); }; for (int hi_endpt : visit_order) { if (endpoint_to_introduce[hi_endpt] != -1) { const int lo_endpt = endpoint_to_introduce[hi_endpt]; const int a = min(hi_endpt, lo_endpt); const int seg_idx = AddLowEndpoint(hi_endpt, endpoint_to_introduce[hi_endpt]); result_endpoint_idx[a] = seg_idx; } for (int hi_child : children[hi_endpt]) { for (int seg_child : endpts_by_hi[hi_child]) { const int lo_child = tree_segments[seg_child].a ^ tree_segments[seg_child].b ^ hi_child; const int lo_endpt = parent[lo_child]; const int seg_idx = AddLowEndpoint(hi_endpt, lo_endpt); tree_segments_pnt[seg_child] = seg_idx; } endpts_by_hi[hi_child].clear(); endpts_by_hi[hi_child].shrink_to_fit(); } ClearEndpoints(); } //~ cerr << SZ(tree_segments) << " " << tree_segments.capacity() << " " << sizeof(TreeSegment) << "\n"; debug() << imie(tree_segments); } void ComputeMiniSols() { vector<vi> segments_by_a(n); for (int i = 0; i < SZ(tree_segments); ++i) { segments_by_a[tree_segments[i].a].push_back(i); } DynamicPrefSum pref_sum(n); for (int a = 0; a < n; ++a) { for (int seg_idx : segments_by_a[a]) { const int b = tree_segments[seg_idx].b - n; const int mini_sol = pref_sum.GetPref(b); tree_segments[seg_idx].sol = mini_sol; debug() << imie(a) << imie(b) << imie(mini_sol); } pref_sum.Inc(a_to_b[a]); } } void PropagateSols() { const int S = SZ(tree_segments); for (int i = S - 1; i >= 0; --i) { auto &seg = tree_segments[i]; const int pnt = tree_segments_pnt[i]; if (pnt != -1) { seg.sol += tree_segments[pnt].sol; } debug() << imie(seg); } } vll GatherAnswers() { vll ans(n, -1); for (int a = 0; a < n; ++a) { const int seg_idx = result_endpoint_idx[a]; ans[a] = tree_segments[seg_idx].sol; } return ans; } vll Solve(const vi &elems) { debug() << imie(elems); n = SZ(elems); a_to_b.resize(n); b_to_a.resize(n); for (int i = 0; i < n; ++i) { a_to_b[i] = elems[i]; b_to_a[elems[i]] = i; } a_to_minb.resize(n); b_to_mina.resize(n); for (int i = n - 1; i >= 0; --i) { a_to_minb[i] = a_to_b[i]; if (i < n - 1) { mini(a_to_minb[i], a_to_minb[i + 1]); } b_to_mina[i] = b_to_a[i]; if (i < n - 1) { mini(b_to_mina[i], b_to_mina[i + 1]); } } debug() << imie(a_to_minb); debug() << imie(b_to_mina); MakeTree(); CreateTreeSegments(); ComputeMiniSols(); PropagateSols(); return GatherAnswers(); } }; vll SolveSegment(vi elems) { debug() << "subroutine" << imie(elems); const int n = SZ(elems); vll answers(n, n - 1); vll ans_left = ConnectedSol{}.Solve(elems); reverse(ALL(elems)); for (int &x : elems) { x = (n - 1) - x; } vll ans_right = ConnectedSol{}.Solve(elems); reverse(ALL(ans_right)); for (int i = 0; i < n; ++i) { answers[i] += ans_left[i] + ans_right[i]; } return answers; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout << fixed << setprecision(11); cerr << fixed << setprecision(6); int n; cin >> n; vi elems(n); for (int &x : elems) { cin >> x; --x; } vi splits{0}; int max_pref = -1; for (int i = 0; i < n; ++i) { max_pref = max(max_pref, elems[i]); if (max_pref == i) { splits.push_back(i + 1); } } vll answers(n); for (int i = 1; i < SZ(splits); ++i) { const int L = splits[i - 1]; const int R = splits[i]; vi subsegment(elems.begin() + L, elems.begin() + R); for (int &x : subsegment) { x -= L; } vll sub_answers = SolveSegment(subsegment); for (int j = L; j < R; ++j) { answers[j] += sub_answers[j - L]; } } for (ll ans : answers) { cout << ans << " "; } cout << "\n"; } |