// Karol Kosinski 2022 #include <bits/stdc++.h> #define FOR(i,a,b) for(int i=(a),_b=(b);i<_b;++i) #define FR_(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FD_(i,b,a) for(int i=(b),_a=(a);i>=_a;--i) #define ALL(c) (c).begin(),(c).end() #define SIZE(c) int((c).size()) #define TIE(x...) int x;tie(x) #define X first #define Y second #ifndef ENABLE_DEBUG #define DEB(k,p,f,x...) #else #define DEB(k,p,f,x...) {if(k)printf("--------%4d : %s\n",__LINE__,__FUNCTION__);if(p)f(x);} #endif #define DEBL DEB(1,1,void,0) #define DEBF(f,x...) DEB(1,1,f,x) #define DEBC(p,x...) DEB(0,p,printf,x) #define DEBUG(x...) DEB(0,1,printf,x) using namespace std; using LL = long long; using ULL = unsigned long long; using PII = pair<int, int>; using TIII = tuple<int, int, int>; constexpr int NX = 100'005; char A[NX]; vector<int> Nodes, S; namespace BellmanFord { // static constexpr int INFTY = 1e9 + 1; int n, D[NX]; vector<PII> G[NX]; void add(int u, int v, int w) { G[u].emplace_back(v, w); DEBUG("** ( %d, %d ) [ %d ]\n", u, v, w); } void clear() { FOR(i,0,n) G[i].clear(); } void printD() { FOR(i,0,n) DEBUG("D[%d] = %d\n", i, D[i]); DEBUG("----------\n") } void init(int ng, int k) { n = ng; D[0] = 0; FOR(i,1,n) D[i] = G[0][ i - 1 ].Y; DEBF(printD); FOR(st,1,k) { FD_( u, n - 1, st) { for ( auto& ed : G[u] ) if ( D[ed.X] > D[u] + ed.Y ) D[ed.X] = D[u] + ed.Y; } DEBF(printD); } } } void find_nodes(int n) { Nodes.push_back(1); FR_(i,2,n) { if ( A[ i - 1 ] == '(' and A[i] == ')' ) Nodes.push_back(i); } // if ( Nodes.back() != n ) // Nodes.push_back( n + 1 ); } int compute(int start, int n) { int result = 0, ind = start + 1; S.clear(); S.push_back( 0 ); FR_( i, Nodes[start], n ) { if ( A[i] == '(' ) { S.push_back( 0 ); } else { S.pop_back(); if ( S.empty() ) { S.push_back( 0 ); } else { if ( Nodes[ind] == i ) { BellmanFord::add( start, ind, result ); ++ ind; } result += ( ++ S.back() ); } } } BellmanFord::add( start, ind, result ); return result; } int main() { int n, k; scanf("%d%d%s", &n, &k, A + 1); find_nodes(n); DEBUG("#Nodes : %d\n", SIZE(Nodes) ); if ( n == k or SIZE(Nodes) <= k ) { printf("0\n"); return 0; } if ( k == 1 ) { printf( "%d\n", compute(0, n) ); return 0; } FOR( i, 0, SIZE(Nodes) ) { compute( i, n ); } BellmanFord::init( SIZE(Nodes) + 1, k ); printf("%d\n", BellmanFord::D[ SIZE(Nodes) ] ); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | // Karol Kosinski 2022 #include <bits/stdc++.h> #define FOR(i,a,b) for(int i=(a),_b=(b);i<_b;++i) #define FR_(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FD_(i,b,a) for(int i=(b),_a=(a);i>=_a;--i) #define ALL(c) (c).begin(),(c).end() #define SIZE(c) int((c).size()) #define TIE(x...) int x;tie(x) #define X first #define Y second #ifndef ENABLE_DEBUG #define DEB(k,p,f,x...) #else #define DEB(k,p,f,x...) {if(k)printf("--------%4d : %s\n",__LINE__,__FUNCTION__);if(p)f(x);} #endif #define DEBL DEB(1,1,void,0) #define DEBF(f,x...) DEB(1,1,f,x) #define DEBC(p,x...) DEB(0,p,printf,x) #define DEBUG(x...) DEB(0,1,printf,x) using namespace std; using LL = long long; using ULL = unsigned long long; using PII = pair<int, int>; using TIII = tuple<int, int, int>; constexpr int NX = 100'005; char A[NX]; vector<int> Nodes, S; namespace BellmanFord { // static constexpr int INFTY = 1e9 + 1; int n, D[NX]; vector<PII> G[NX]; void add(int u, int v, int w) { G[u].emplace_back(v, w); DEBUG("** ( %d, %d ) [ %d ]\n", u, v, w); } void clear() { FOR(i,0,n) G[i].clear(); } void printD() { FOR(i,0,n) DEBUG("D[%d] = %d\n", i, D[i]); DEBUG("----------\n") } void init(int ng, int k) { n = ng; D[0] = 0; FOR(i,1,n) D[i] = G[0][ i - 1 ].Y; DEBF(printD); FOR(st,1,k) { FD_( u, n - 1, st) { for ( auto& ed : G[u] ) if ( D[ed.X] > D[u] + ed.Y ) D[ed.X] = D[u] + ed.Y; } DEBF(printD); } } } void find_nodes(int n) { Nodes.push_back(1); FR_(i,2,n) { if ( A[ i - 1 ] == '(' and A[i] == ')' ) Nodes.push_back(i); } // if ( Nodes.back() != n ) // Nodes.push_back( n + 1 ); } int compute(int start, int n) { int result = 0, ind = start + 1; S.clear(); S.push_back( 0 ); FR_( i, Nodes[start], n ) { if ( A[i] == '(' ) { S.push_back( 0 ); } else { S.pop_back(); if ( S.empty() ) { S.push_back( 0 ); } else { if ( Nodes[ind] == i ) { BellmanFord::add( start, ind, result ); ++ ind; } result += ( ++ S.back() ); } } } BellmanFord::add( start, ind, result ); return result; } int main() { int n, k; scanf("%d%d%s", &n, &k, A + 1); find_nodes(n); DEBUG("#Nodes : %d\n", SIZE(Nodes) ); if ( n == k or SIZE(Nodes) <= k ) { printf("0\n"); return 0; } if ( k == 1 ) { printf( "%d\n", compute(0, n) ); return 0; } FOR( i, 0, SIZE(Nodes) ) { compute( i, n ); } BellmanFord::init( SIZE(Nodes) + 1, k ); printf("%d\n", BellmanFord::D[ SIZE(Nodes) ] ); return 0; } |