1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
#include <bits/stdc++.h>

using namespace std;

#define ll long long

#define rng(i,a,b) for(int i=int(a);i<int(b);i++)
#define rep(i,b) rng(i,0,b)

typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<vvi> vvvi;

typedef vector<ll> vl;
typedef vector<vl> vvl;
typedef vector<vvl> vvvl;

typedef pair<int,int> ii;

template<class t> using vc=vector<t>;
template<class t> using vvc=vc<vc<t>>;

const int MOD = 1e9+7;

ll read(){
    ll i;
    cin>>i;
    return i;
}

vi readvi(int n,int off=0,int shift=0){
    vi v(n+shift);
    rep(i,shift)v[i]=0;
    rep(i,n)v[i+shift]=read()+off;
    return v;
}

void YesNo(bool condition, bool do_exit=true) {
    if (condition)
        cout << "Yes" << endl;
    else
        cout << "No" << endl;
    if (do_exit)
        exit(0);
}

//a^b mod m, log(b) operations.
//assumes a*m fits long long.
long long binpow(long long a, long long b, long long m) {
    a %= m;
    long long res = 1;
    while (b > 0) {
        if (b & 1)
            res = res * a % m;
        a = a * a % m;
        b >>= 1;
    }
    return res;
}

//modular inverse of a, using Fermat's little thm
ll inverse(ll a, ll m) {
    return binpow (a, m-2, m);
}


ll det(int n, vvl & a) {

    ll det = 1;
    for (int i=0; i<n; ++i) {
        int k = i;
        while (a[k][i] == 0 and k<n-1)
            ++k;
        if (a[k][i] == 0)
            return 0;
        swap (a[i], a[k]);
        if (i != k)
            det = (MOD-det) % MOD;
        det = (det * a[i][i]) % MOD;
        for (int j=i+1; j<n; ++j)
            a[i][j] = (a[i][j] * inverse(a[i][i], MOD)) % MOD;
        for (int j=0; j<n; ++j)
            if (j != i && a[j][i] != 0)
                for (int k=i+1; k<n; ++k)
                    a[j][k] = (a[j][k] + MOD - (a[i][k] * a[j][i]) % MOD) % MOD;
    }

    return det;
}

int main(void ) {
    ios::sync_with_stdio(false);
    cin.tie(NULL);

    int n;
    cin >> n;

    vi s = readvi(n);

    vvl a(n-1, vl(n-1, 0));

    rep(i,n-1)
        rep(j,n-1)
            if (i != j)
                a[i][j] = gcd(s[i], s[j]);

    rep(i,n-1) {
        a[i][i] = MOD - gcd(s[i],s[n-1]);
        rep(j, n - 1)
            if (i != j)
                a[i][i] = (a[i][i] + MOD - a[i][j]) % MOD;
    }

    rep(i,n-1)
        rep(j,n-1)
            a[i][j] = (MOD - a[i][j]) % MOD;

    cout << det (n-1, a) << endl;

    return 0;
}