#include <iostream> #include <vector> using namespace std; using ll=long long; const int C=4001; const ll Inf = 1000000000000001ll; //limit - to calcutate, border - feasible region for opt ll dp[C][C], res[C][C]; void solve_dc_dp(int index, int left_limit, int right_limit, int left_border, int right_border){ if (left_limit > right_limit) return; int position; int place = left_limit + (right_limit-left_limit)/2; res[index][place] = Inf; for (int i=left_border; i<=right_border; i++){ ll value = res[index-1][i-1] + dp[i][place]; if (value < res[index][place]){ res[index][place] = value; position = i; } } solve_dc_dp(index, place+1, right_limit, position, right_border); solve_dc_dp(index, left_limit, place-1, left_border, position); } int main(){ cin.tie(0); ios_base::sync_with_stdio(0); string expr; int n, k; cin >> n >> k; cin >> expr; //Ku potomnych: zastąpić drzewem i skewencją, wyjdzie liniowy dostęp do dp(i, j) - przy nklog(n) ledwie istotne for (int i=n-1; i>=0; i--){ bool dead = false; int current_results = 0; int plus_minus = 0; for (int j=i; j<n; j++){ if (expr[j] == '(') plus_minus++; else plus_minus--; if (plus_minus < 0) dead = true; if (plus_minus == 0 && dead == false) current_results++; dp[i][j] = dp[i+1][j] + current_results; } } for (int i=0; i<n; i++) res[1][i] = dp[0][i]; //Solucja?: https://codeforces.com/blog/entry/8219#comment-139241 - wzorcówka pewno for (int j=2; j<=k; j++){ solve_dc_dp(j, 0, n-1, 0, n-1); } printf ("%lld\n", res[k][n-1]); return 0;}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | #include <iostream> #include <vector> using namespace std; using ll=long long; const int C=4001; const ll Inf = 1000000000000001ll; //limit - to calcutate, border - feasible region for opt ll dp[C][C], res[C][C]; void solve_dc_dp(int index, int left_limit, int right_limit, int left_border, int right_border){ if (left_limit > right_limit) return; int position; int place = left_limit + (right_limit-left_limit)/2; res[index][place] = Inf; for (int i=left_border; i<=right_border; i++){ ll value = res[index-1][i-1] + dp[i][place]; if (value < res[index][place]){ res[index][place] = value; position = i; } } solve_dc_dp(index, place+1, right_limit, position, right_border); solve_dc_dp(index, left_limit, place-1, left_border, position); } int main(){ cin.tie(0); ios_base::sync_with_stdio(0); string expr; int n, k; cin >> n >> k; cin >> expr; //Ku potomnych: zastąpić drzewem i skewencją, wyjdzie liniowy dostęp do dp(i, j) - przy nklog(n) ledwie istotne for (int i=n-1; i>=0; i--){ bool dead = false; int current_results = 0; int plus_minus = 0; for (int j=i; j<n; j++){ if (expr[j] == '(') plus_minus++; else plus_minus--; if (plus_minus < 0) dead = true; if (plus_minus == 0 && dead == false) current_results++; dp[i][j] = dp[i+1][j] + current_results; } } for (int i=0; i<n; i++) res[1][i] = dp[0][i]; //Solucja?: https://codeforces.com/blog/entry/8219#comment-139241 - wzorcówka pewno for (int j=2; j<=k; j++){ solve_dc_dp(j, 0, n-1, 0, n-1); } printf ("%lld\n", res[k][n-1]); return 0;} |