/********************************* ***** Common v2.0.6 ***** *********************************/ #include <bits/stdc++.h> void test(); namespace common { template<typename T> T gcd(T const &a, T const &b) { return b == 0 ? a : gcd(b, a%b); } namespace io { template<typename T> inline std::ostream& operator<< (std::ostream& out, const std::vector<T>& data) { out << data[0]; for( auto it = data.begin()+1; it != data.end(); it++ ) out << ' ' << *it; return out; } template<typename T> inline std::istream& operator>> (std::istream& in, std::vector<T>& data) { for( auto &v : data ) in >> v; return in; } template<typename A, typename B> inline std::ostream& operator<< (std::ostream& out, const std::pair<A, B>& data) { return out << data.first << ' ' << data.second; } template<typename A, typename B> inline std::istream& operator>> (std::istream& in, std::pair<A, B>& data) { return in >> data.first >> data.second; } } template<typename T> class vector_from_one : public std::vector<T> { public: using std::vector<T>::vector; T& operator[] (size_t n) { return std::vector<T>::operator[](n-1); } const T& operator[] (size_t n) const { return std::vector<T>::operator[](n-1); } T& at (size_t n) { return std::vector<T>::at(n-1); } const T& at (size_t n) const { return std::vector<T>::at(n-1); } }; namespace functional { template<typename Type, typename C> struct GetComparator { using Comparator = C; }; template<typename Type> struct GetComparator<Type, void> { using Comparator = std::less<Type>; }; template<typename Object, typename Type, Type Object::* default_field, typename Comparator = void> struct CompareField { const Type Object::* field; CompareField() : field(default_field) {} CompareField(Type Object::* field) : field(field) {} constexpr bool operator()(Object const &lhs, Object const &rhs) const { return typename GetComparator<Type, Comparator>::Comparator()(lhs.*field, rhs.*field); } }; template<typename Comparator = void, typename Object, typename Type> const CompareField<Object, Type, nullptr, Comparator> compare_field(Type Object::* field) { return {field}; } template<typename iterator_type> class Iterable { typedef iterator_type iterator; const iterator begin_iterator; const iterator end_iterator; public: Iterable(iterator begin, iterator end) : begin_iterator(begin), end_iterator(end) {} iterator begin() { return begin_iterator; } iterator end() { return end_iterator; } }; template<typename iterator> Iterable<iterator> iterable(iterator begin, iterator end){ return Iterable<iterator>(begin, end); } template<typename Collection> auto reversed(Collection &collection) -> Iterable<decltype(collection.rbegin())> { return iterable(collection.rbegin(), collection.rend()); } } namespace operators { struct base_operator {}; template <typename LHS, typename OP> struct operator_proxy { LHS lhs; OP op; }; template <typename LHS, typename OP, typename SFINAE = typename std::enable_if<std::is_base_of<base_operator, typename std::remove_reference<OP>::type>::value>::type> operator_proxy<LHS, OP> operator<(LHS &&lhs, OP &&op) { return {lhs, op}; } template <typename LHS, typename OP, typename RHS> auto operator>(operator_proxy<LHS, OP> proxy, RHS &&rhs) -> decltype(proxy.op(proxy.lhs, rhs)) { proxy.op(proxy.lhs, rhs); } struct : public base_operator { template <typename T> void operator()(T &x, T y) const { x = max(x, y); } } const set_if_greater; struct : public base_operator { template <typename T> void operator()(T &x, T y) const { x = min(x, y); } } const set_if_less; } namespace main { int _default(int const, char const * const[]) { std::cout << "Undefined common::main app!" << std::endl; return 1; } int (*_app)(int const, char const * const[]); class one { static int main(int const argc, char const * const argv[]) { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); test(); return 0; } public: one() { _app = main; } }; class many { static int main(int const argc, char const * const argv[]) { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int T; std::cin >> T; while( T --> 0 ) test(); return 0; } public: many() { _app = main; } }; class all { static int main(int const argc, char const * const argv[]) { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); std::cin.exceptions(std::ifstream::eofbit); try { while(std::cin) test(); } catch (std::ifstream::failure&) {} return 0; } public: all() { _app = main; } }; } } int main(int const argc, char const * const argv[]) { return common::main::_app(argc, argv); } using namespace std; using namespace common; using namespace common::io; using namespace common::functional; using namespace common::operators; // end of #include <common.hpp> //==================================================== /********************************** * Common :: union_find v1.0.3 * **********************************/ namespace common { namespace union_find { class Base { friend class AccessBase; Base *parent = nullptr; size_t rank = 0; }; struct AccessBase { static Base*& get_parent(Base &base) { return base.parent; } static Base* const& get_parent(Base const &base) { return base.parent; } static size_t& get_rank(Base &base) { return base.rank; } }; namespace impl { template<typename Type, size_t length, typename SFINAE = typename std::enable_if<std::is_integral<Type>::value>::type> struct array { constexpr static bool simple_constructor = true; struct Data { Type parent = length; size_t rank = 0; }; typedef Type Argument; typedef std::array<Data, length> DataContainer; constexpr static bool has_parent(Argument arg, DataContainer const &data) { return data[arg].parent != length; } constexpr static Argument get_parent(Argument arg, DataContainer const &data) { return data[arg].parent; } constexpr static void set_parent(Argument arg, Argument parent, DataContainer &data) { data[arg].parent = parent; } constexpr static void reset_parent(Argument arg, DataContainer &data) { data[arg].parent = length; } constexpr static size_t& rank(Argument arg, DataContainer &data) { return data[arg].rank; } constexpr static bool eq(Argument a, Argument b) { return a == b; } }; template<typename Type, typename SFINAE = typename std::enable_if<std::is_integral<Type>::value>::type> struct vector { constexpr static bool simple_constructor = false; struct Data { Type parent; size_t rank = 0; Data(Type rhs) : parent(rhs) {} }; typedef Type Argument; typedef std::vector<Data> DataContainer; constexpr static bool has_parent(Argument arg, DataContainer const &data) { return data[arg].parent != data.size(); } constexpr static Argument get_parent(Argument arg, DataContainer const &data) { return data[arg].parent; } constexpr static void set_parent(Argument arg, Argument parent, DataContainer &data) { data[arg].parent = parent; } constexpr static void reset_parent(Argument arg, DataContainer &data) { data[arg].parent = arg; } constexpr static size_t& rank(Argument arg, DataContainer &data) { return data[arg].rank; } constexpr static bool eq(Argument a, Argument b) { return a == b; } }; template<typename Type, typename SFINAE = typename std::enable_if<not std::is_base_of<Base, Type>::value>::type> struct map { constexpr static bool simple_constructor = true; struct Data { Type parent; size_t rank = 0; Data(Type rhs) : parent(rhs) {} }; typedef Type Argument; typedef std::map<Type, Data> DataContainer; constexpr static bool has_parent(Argument arg, DataContainer const &data) { return data.find(arg) != data.end() and data.at(arg).parent != arg; } constexpr static Argument get_parent(Argument arg, DataContainer const &data) { return data.at(arg).parent; } constexpr static void set_parent(Argument arg, Argument parent, DataContainer &data) { auto it = data.find(arg); if( it != data.end() ) it->second.parent = parent; else data.insert(std::pair<Type, Data>(arg, parent)); } constexpr static void reset_parent(Argument arg, DataContainer &data) { data.erase(arg); } static size_t& rank(Argument arg, DataContainer &data) { auto it = data.find(arg); if( it != data.end() ) return it->second.rank; data.insert(std::pair<Type, Data>(arg, arg)); return data.at(arg).rank; } constexpr static bool eq(Argument a, Argument b) { return a == b; } }; template<typename Type, typename SFINAE = typename std::enable_if<std::is_base_of<Base, Type>::value>::type> struct object { constexpr static bool simple_constructor = true; typedef Type &Argument; typedef struct {} DataContainer; constexpr static bool has_parent(Argument const arg, DataContainer) { return AccessBase::get_parent(arg); } constexpr static Argument get_parent(Argument const arg, DataContainer) { return static_cast<Argument>(*AccessBase::get_parent(arg)); } constexpr static void set_parent(Argument arg, Argument parent, DataContainer) { AccessBase::get_parent(arg) = &parent; } constexpr static void reset_parent(Argument arg, DataContainer) { AccessBase::get_parent(arg) = nullptr; } constexpr static size_t& rank(Argument arg, DataContainer) { return AccessBase::get_rank(arg); } constexpr static bool eq(Argument const a, Argument const b) { return &a == &b; } }; } template<typename Type, typename Impl> class UnionFind { typedef typename Impl::Argument Argument; public: typename Impl::DataContainer data; public: template<bool TRUE = true, typename SFINAE = typename std::enable_if<TRUE and Impl::simple_constructor>::type> UnionFind() {} template<bool TRUE = true, typename SFINAE = typename std::enable_if<TRUE and not Impl::simple_constructor>::type> UnionFind(size_t length) : data(length, length) {} Argument find(Argument arg) { if(not Impl::has_parent(arg, data)) return arg; Argument root = find(Impl::get_parent(arg, data)); Impl::set_parent(arg, root, data); return root; } void join(Argument a, Argument b) { Argument a_root = find(a); Argument b_root = find(b); if(Impl::rank(a_root, data) > Impl::rank(b_root, data)) Impl::set_parent(b_root, a_root, data); else if(Impl::rank(a_root, data) < Impl::rank(b_root, data)) Impl::set_parent(a_root, b_root, data); else if(not Impl::eq(a_root, b_root)) { Impl::set_parent(b_root, a_root, data); ++Impl::rank(a_root, data); } } bool joined(Argument a, Argument b) { return Impl::eq(find(a), find(b)); } void reset(Argument a) { Impl::reset_parent(a, data); Impl::rank(a, data) = 0; } }; template<typename Type, size_t length> UnionFind<Type, impl::array<Type, length>> create() { return {}; } template<typename Type> UnionFind<Type, impl::vector<Type>> create(size_t length) { return {length}; } template<typename Type> UnionFind<Type, impl::object<Type>> create() { return {}; } template<typename Type> UnionFind<Type, impl::map<Type>> create() { return {}; } } } // end of #include <union_find.hpp> //================================== main::one _; struct Employee; typedef reference_wrapper<Employee> EmployeeRef; typedef vector<EmployeeRef>::iterator EmployeesIterator; typedef Iterable<EmployeesIterator> EmployeesView; struct Employee : union_find::Base { int id; EmployeesIterator begin, end; bool allowed_as_root; bool in_tree = false; int chef = 0; }; typedef pair<EmployeeRef, EmployeeRef> Edge; typedef vector<Edge> Edges; void test() { int n, m; cin >> n >> m; vector_from_one<Employee> employees(n); for(int i = 1; i <= n; ++i) employees[i].id = i; vector<EmployeeRef> employees_tree(begin(employees), end(employees)); Edges yes, no; yes.reserve(m); no.reserve(m); while( m --> 0 ) { int a, b; char type; cin >> a >> b >> ws >> type; if(type == 'T') { yes.emplace_back(employees[a], employees[b]); no.emplace_back(employees[b], employees[a]); } else { no.emplace_back(employees[a], employees[b]); } } std::vector<EmployeesView> subtrees = {iterable(begin(employees_tree), end(employees_tree))}; while(not subtrees.empty()) { auto uf = union_find::create<Employee>(); for(Employee &emp : employees) { emp.allowed_as_root = true; uf.reset(emp); } for(auto &edge : no) edge.second.get().allowed_as_root = false; for(auto &subtree : subtrees) { EmployeesIterator root_it = find_if( begin(subtree), end(subtree), [](Employee &emp){ return emp.allowed_as_root; } ); if(root_it == end(subtree)) { cout << "NIE\n"; return; } swap(*root_it, *begin(subtree)); Employee &root = *begin(subtree); root.begin = next(begin(subtree)); root.end = end(subtree); root.in_tree = true; for(Employee &e : iterable(root.begin, root.end)) e.chef = root.id; } { auto invalid_edge = [](Edge &edge) { return edge.first.get().in_tree or edge.second.get().in_tree; }; yes.erase(remove_if(begin(yes), end(yes), invalid_edge), end(yes)); } for(auto &edge : yes) { uf.join(edge.first, edge.second); } std::vector<EmployeesView> new_subtrees; for(auto &subtree : subtrees) { Employee &root = *begin(subtree); sort(root.begin, root.end, [&uf](Employee &a, Employee &b) { return uf.find(a).id < uf.find(b).id; }); for(EmployeesIterator it1 = root.begin, it2; it1 != root.end; it1 = it2) { it2 = find_if(it1, root.end, [&uf, it1](Employee &e) { return not uf.joined(*it1, e); }); new_subtrees.emplace_back(it1, it2); } } subtrees.swap(new_subtrees); { auto invalid_edge = [&uf](Edge &edge) { return not uf.joined(edge.first, edge.second); }; no.erase(remove_if(begin(no), end(no), invalid_edge), end(no)); } } //cout << "TAK\n"; for(Employee &e : employees) cout << e.chef << '\n'; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 | /********************************* ***** Common v2.0.6 ***** *********************************/ #include <bits/stdc++.h> void test(); namespace common { template<typename T> T gcd(T const &a, T const &b) { return b == 0 ? a : gcd(b, a%b); } namespace io { template<typename T> inline std::ostream& operator<< (std::ostream& out, const std::vector<T>& data) { out << data[0]; for( auto it = data.begin()+1; it != data.end(); it++ ) out << ' ' << *it; return out; } template<typename T> inline std::istream& operator>> (std::istream& in, std::vector<T>& data) { for( auto &v : data ) in >> v; return in; } template<typename A, typename B> inline std::ostream& operator<< (std::ostream& out, const std::pair<A, B>& data) { return out << data.first << ' ' << data.second; } template<typename A, typename B> inline std::istream& operator>> (std::istream& in, std::pair<A, B>& data) { return in >> data.first >> data.second; } } template<typename T> class vector_from_one : public std::vector<T> { public: using std::vector<T>::vector; T& operator[] (size_t n) { return std::vector<T>::operator[](n-1); } const T& operator[] (size_t n) const { return std::vector<T>::operator[](n-1); } T& at (size_t n) { return std::vector<T>::at(n-1); } const T& at (size_t n) const { return std::vector<T>::at(n-1); } }; namespace functional { template<typename Type, typename C> struct GetComparator { using Comparator = C; }; template<typename Type> struct GetComparator<Type, void> { using Comparator = std::less<Type>; }; template<typename Object, typename Type, Type Object::* default_field, typename Comparator = void> struct CompareField { const Type Object::* field; CompareField() : field(default_field) {} CompareField(Type Object::* field) : field(field) {} constexpr bool operator()(Object const &lhs, Object const &rhs) const { return typename GetComparator<Type, Comparator>::Comparator()(lhs.*field, rhs.*field); } }; template<typename Comparator = void, typename Object, typename Type> const CompareField<Object, Type, nullptr, Comparator> compare_field(Type Object::* field) { return {field}; } template<typename iterator_type> class Iterable { typedef iterator_type iterator; const iterator begin_iterator; const iterator end_iterator; public: Iterable(iterator begin, iterator end) : begin_iterator(begin), end_iterator(end) {} iterator begin() { return begin_iterator; } iterator end() { return end_iterator; } }; template<typename iterator> Iterable<iterator> iterable(iterator begin, iterator end){ return Iterable<iterator>(begin, end); } template<typename Collection> auto reversed(Collection &collection) -> Iterable<decltype(collection.rbegin())> { return iterable(collection.rbegin(), collection.rend()); } } namespace operators { struct base_operator {}; template <typename LHS, typename OP> struct operator_proxy { LHS lhs; OP op; }; template <typename LHS, typename OP, typename SFINAE = typename std::enable_if<std::is_base_of<base_operator, typename std::remove_reference<OP>::type>::value>::type> operator_proxy<LHS, OP> operator<(LHS &&lhs, OP &&op) { return {lhs, op}; } template <typename LHS, typename OP, typename RHS> auto operator>(operator_proxy<LHS, OP> proxy, RHS &&rhs) -> decltype(proxy.op(proxy.lhs, rhs)) { proxy.op(proxy.lhs, rhs); } struct : public base_operator { template <typename T> void operator()(T &x, T y) const { x = max(x, y); } } const set_if_greater; struct : public base_operator { template <typename T> void operator()(T &x, T y) const { x = min(x, y); } } const set_if_less; } namespace main { int _default(int const, char const * const[]) { std::cout << "Undefined common::main app!" << std::endl; return 1; } int (*_app)(int const, char const * const[]); class one { static int main(int const argc, char const * const argv[]) { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); test(); return 0; } public: one() { _app = main; } }; class many { static int main(int const argc, char const * const argv[]) { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); int T; std::cin >> T; while( T --> 0 ) test(); return 0; } public: many() { _app = main; } }; class all { static int main(int const argc, char const * const argv[]) { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); std::cin.exceptions(std::ifstream::eofbit); try { while(std::cin) test(); } catch (std::ifstream::failure&) {} return 0; } public: all() { _app = main; } }; } } int main(int const argc, char const * const argv[]) { return common::main::_app(argc, argv); } using namespace std; using namespace common; using namespace common::io; using namespace common::functional; using namespace common::operators; // end of #include <common.hpp> //==================================================== /********************************** * Common :: union_find v1.0.3 * **********************************/ namespace common { namespace union_find { class Base { friend class AccessBase; Base *parent = nullptr; size_t rank = 0; }; struct AccessBase { static Base*& get_parent(Base &base) { return base.parent; } static Base* const& get_parent(Base const &base) { return base.parent; } static size_t& get_rank(Base &base) { return base.rank; } }; namespace impl { template<typename Type, size_t length, typename SFINAE = typename std::enable_if<std::is_integral<Type>::value>::type> struct array { constexpr static bool simple_constructor = true; struct Data { Type parent = length; size_t rank = 0; }; typedef Type Argument; typedef std::array<Data, length> DataContainer; constexpr static bool has_parent(Argument arg, DataContainer const &data) { return data[arg].parent != length; } constexpr static Argument get_parent(Argument arg, DataContainer const &data) { return data[arg].parent; } constexpr static void set_parent(Argument arg, Argument parent, DataContainer &data) { data[arg].parent = parent; } constexpr static void reset_parent(Argument arg, DataContainer &data) { data[arg].parent = length; } constexpr static size_t& rank(Argument arg, DataContainer &data) { return data[arg].rank; } constexpr static bool eq(Argument a, Argument b) { return a == b; } }; template<typename Type, typename SFINAE = typename std::enable_if<std::is_integral<Type>::value>::type> struct vector { constexpr static bool simple_constructor = false; struct Data { Type parent; size_t rank = 0; Data(Type rhs) : parent(rhs) {} }; typedef Type Argument; typedef std::vector<Data> DataContainer; constexpr static bool has_parent(Argument arg, DataContainer const &data) { return data[arg].parent != data.size(); } constexpr static Argument get_parent(Argument arg, DataContainer const &data) { return data[arg].parent; } constexpr static void set_parent(Argument arg, Argument parent, DataContainer &data) { data[arg].parent = parent; } constexpr static void reset_parent(Argument arg, DataContainer &data) { data[arg].parent = arg; } constexpr static size_t& rank(Argument arg, DataContainer &data) { return data[arg].rank; } constexpr static bool eq(Argument a, Argument b) { return a == b; } }; template<typename Type, typename SFINAE = typename std::enable_if<not std::is_base_of<Base, Type>::value>::type> struct map { constexpr static bool simple_constructor = true; struct Data { Type parent; size_t rank = 0; Data(Type rhs) : parent(rhs) {} }; typedef Type Argument; typedef std::map<Type, Data> DataContainer; constexpr static bool has_parent(Argument arg, DataContainer const &data) { return data.find(arg) != data.end() and data.at(arg).parent != arg; } constexpr static Argument get_parent(Argument arg, DataContainer const &data) { return data.at(arg).parent; } constexpr static void set_parent(Argument arg, Argument parent, DataContainer &data) { auto it = data.find(arg); if( it != data.end() ) it->second.parent = parent; else data.insert(std::pair<Type, Data>(arg, parent)); } constexpr static void reset_parent(Argument arg, DataContainer &data) { data.erase(arg); } static size_t& rank(Argument arg, DataContainer &data) { auto it = data.find(arg); if( it != data.end() ) return it->second.rank; data.insert(std::pair<Type, Data>(arg, arg)); return data.at(arg).rank; } constexpr static bool eq(Argument a, Argument b) { return a == b; } }; template<typename Type, typename SFINAE = typename std::enable_if<std::is_base_of<Base, Type>::value>::type> struct object { constexpr static bool simple_constructor = true; typedef Type &Argument; typedef struct {} DataContainer; constexpr static bool has_parent(Argument const arg, DataContainer) { return AccessBase::get_parent(arg); } constexpr static Argument get_parent(Argument const arg, DataContainer) { return static_cast<Argument>(*AccessBase::get_parent(arg)); } constexpr static void set_parent(Argument arg, Argument parent, DataContainer) { AccessBase::get_parent(arg) = &parent; } constexpr static void reset_parent(Argument arg, DataContainer) { AccessBase::get_parent(arg) = nullptr; } constexpr static size_t& rank(Argument arg, DataContainer) { return AccessBase::get_rank(arg); } constexpr static bool eq(Argument const a, Argument const b) { return &a == &b; } }; } template<typename Type, typename Impl> class UnionFind { typedef typename Impl::Argument Argument; public: typename Impl::DataContainer data; public: template<bool TRUE = true, typename SFINAE = typename std::enable_if<TRUE and Impl::simple_constructor>::type> UnionFind() {} template<bool TRUE = true, typename SFINAE = typename std::enable_if<TRUE and not Impl::simple_constructor>::type> UnionFind(size_t length) : data(length, length) {} Argument find(Argument arg) { if(not Impl::has_parent(arg, data)) return arg; Argument root = find(Impl::get_parent(arg, data)); Impl::set_parent(arg, root, data); return root; } void join(Argument a, Argument b) { Argument a_root = find(a); Argument b_root = find(b); if(Impl::rank(a_root, data) > Impl::rank(b_root, data)) Impl::set_parent(b_root, a_root, data); else if(Impl::rank(a_root, data) < Impl::rank(b_root, data)) Impl::set_parent(a_root, b_root, data); else if(not Impl::eq(a_root, b_root)) { Impl::set_parent(b_root, a_root, data); ++Impl::rank(a_root, data); } } bool joined(Argument a, Argument b) { return Impl::eq(find(a), find(b)); } void reset(Argument a) { Impl::reset_parent(a, data); Impl::rank(a, data) = 0; } }; template<typename Type, size_t length> UnionFind<Type, impl::array<Type, length>> create() { return {}; } template<typename Type> UnionFind<Type, impl::vector<Type>> create(size_t length) { return {length}; } template<typename Type> UnionFind<Type, impl::object<Type>> create() { return {}; } template<typename Type> UnionFind<Type, impl::map<Type>> create() { return {}; } } } // end of #include <union_find.hpp> //================================== main::one _; struct Employee; typedef reference_wrapper<Employee> EmployeeRef; typedef vector<EmployeeRef>::iterator EmployeesIterator; typedef Iterable<EmployeesIterator> EmployeesView; struct Employee : union_find::Base { int id; EmployeesIterator begin, end; bool allowed_as_root; bool in_tree = false; int chef = 0; }; typedef pair<EmployeeRef, EmployeeRef> Edge; typedef vector<Edge> Edges; void test() { int n, m; cin >> n >> m; vector_from_one<Employee> employees(n); for(int i = 1; i <= n; ++i) employees[i].id = i; vector<EmployeeRef> employees_tree(begin(employees), end(employees)); Edges yes, no; yes.reserve(m); no.reserve(m); while( m --> 0 ) { int a, b; char type; cin >> a >> b >> ws >> type; if(type == 'T') { yes.emplace_back(employees[a], employees[b]); no.emplace_back(employees[b], employees[a]); } else { no.emplace_back(employees[a], employees[b]); } } std::vector<EmployeesView> subtrees = {iterable(begin(employees_tree), end(employees_tree))}; while(not subtrees.empty()) { auto uf = union_find::create<Employee>(); for(Employee &emp : employees) { emp.allowed_as_root = true; uf.reset(emp); } for(auto &edge : no) edge.second.get().allowed_as_root = false; for(auto &subtree : subtrees) { EmployeesIterator root_it = find_if( begin(subtree), end(subtree), [](Employee &emp){ return emp.allowed_as_root; } ); if(root_it == end(subtree)) { cout << "NIE\n"; return; } swap(*root_it, *begin(subtree)); Employee &root = *begin(subtree); root.begin = next(begin(subtree)); root.end = end(subtree); root.in_tree = true; for(Employee &e : iterable(root.begin, root.end)) e.chef = root.id; } { auto invalid_edge = [](Edge &edge) { return edge.first.get().in_tree or edge.second.get().in_tree; }; yes.erase(remove_if(begin(yes), end(yes), invalid_edge), end(yes)); } for(auto &edge : yes) { uf.join(edge.first, edge.second); } std::vector<EmployeesView> new_subtrees; for(auto &subtree : subtrees) { Employee &root = *begin(subtree); sort(root.begin, root.end, [&uf](Employee &a, Employee &b) { return uf.find(a).id < uf.find(b).id; }); for(EmployeesIterator it1 = root.begin, it2; it1 != root.end; it1 = it2) { it2 = find_if(it1, root.end, [&uf, it1](Employee &e) { return not uf.joined(*it1, e); }); new_subtrees.emplace_back(it1, it2); } } subtrees.swap(new_subtrees); { auto invalid_edge = [&uf](Edge &edge) { return not uf.joined(edge.first, edge.second); }; no.erase(remove_if(begin(no), end(no), invalid_edge), end(no)); } } //cout << "TAK\n"; for(Employee &e : employees) cout << e.chef << '\n'; } |