#include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a); i<(b); ++i) //#define REP(i,n) FOR(i,1,(n)+1) typedef vector<int> vi; #define pb push_back #define sz size() typedef pair<int,int> pii; #define mp make_pair #define st first #define nd second typedef long long ll; #define INF 1000000001 //#define VAR(n,v) typeof(v) n=(v) #define ALL(t) t.begin(),t.end() #define SC(a) scanf("%d", &a) #define GET(a) int a; SC(a) #define ISDEBUG 0 #define dprintf(...) if(ISDEBUG) \ {printf("\033[31m"); printf(__VA_ARGS__); printf("\033[0m");} template <class It> void dptab(It b, It e, const char* f="%d ") { if(ISDEBUG) { for(It it=b; it!=e; ++it) dprintf(f, *it); dprintf("\n"); }} enum EdgeDirection { INCOME, OUTCOME }; struct Edge { int v; EdgeDirection direction; explicit Edge(int v, EdgeDirection d) : v(v), direction(d) {} bool operator<(const Edge &e) const { if(v != e.v) return v < e.v; else return direction < e.direction; } }; set<Edge> graph_positives[1000]; set<Edge> graph_negatives[1000]; int parent[1000]; int income_negatives[1000]; int outcome_positives[1000]; int n; void dfs(int vertex, const set<int> &vertices, vector<bool> &visited, set<int> &subtree) { visited[vertex] = true; subtree.insert(vertex); for(const auto &edge : graph_positives[vertex]) { if(!visited[edge.v] && vertices.count(edge.v)) { dfs(edge.v, vertices, visited, subtree); } } } bool crawl_graph(int director, const set<int> &vertices) { if(vertices.empty()) { return true; } dprintf("\nvertices: "); dptab(ALL(vertices)); int new_director = -1; for(auto const &vertex : vertices) { if(0 == income_negatives[vertex] && 0 == outcome_positives[vertex]) { new_director = vertex; break; } } if(-1 == new_director) { dprintf("FALSE!\n"); for(auto const &vertex : vertices) { dprintf(" income_neg[%d] = %d -> ", vertex, income_negatives[vertex]); dptab(ALL(graph_negatives[vertex])); dprintf(" outcome_pos[%d] = %d\n", vertex, outcome_positives[vertex]); } return false; } parent[new_director] = director; dprintf("new director: %d\n", new_director); for(auto const &edge : graph_positives[new_director]) { dprintf("erasing: %d\n", edge.v); assert(edge.direction == INCOME); graph_positives[edge.v].erase(Edge(new_director, OUTCOME)); --outcome_positives[edge.v]; } //graph_positives[new_director].clear(); //TODO: remove vector<bool> visited(n, 0); for(auto const &vertex : vertices) { if(!visited[vertex] && vertex != new_director) { set<int> subtree; dprintf("dfs:"); dfs(vertex, vertices, visited, subtree); dprintf("\n"); dprintf("subtree: "); dptab(ALL(subtree)); for(auto const &subtree_vertex : subtree) { set<Edge> updated_negatives; for(auto const &edge : graph_negatives[subtree_vertex]) { if(subtree.count(edge.v)) { updated_negatives.insert(edge); } else { if(edge.direction == INCOME) { graph_negatives[edge.v].erase(Edge(subtree_vertex, OUTCOME)); --income_negatives[subtree_vertex]; } else { graph_negatives[edge.v].erase(Edge(subtree_vertex, INCOME)); --income_negatives[edge.v]; } } } graph_negatives[subtree_vertex] = updated_negatives; } bool result = crawl_graph(new_director, subtree); if(!result) { return false; } } } return true; } int main() { SC(n); GET(m); FOR(i,0,n) { parent[i] = -1; } while(m--) { int u, v; char c; scanf("%d %d %c", &u, &v, &c); --u, --v; dprintf("%d %d %c\n", u, v, c); if ('T' == c) { graph_positives[u].insert(Edge(v, OUTCOME)); graph_positives[v].insert(Edge(u, INCOME)); ++outcome_positives[u]; } else { graph_negatives[u].insert(Edge(v, OUTCOME)); graph_negatives[v].insert(Edge(u, INCOME)); ++income_negatives[v]; } } set<int> vertices; FOR(i,0,n) { vertices.insert(i); } bool result = crawl_graph(-1, vertices); if(!result) { printf("NIE\n"); } else { if(ISDEBUG) { printf("TAK\n"); } else { FOR(i,0,n) { printf("%d\n", parent[i] + 1); } } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | #include <bits/stdc++.h> using namespace std; #define FOR(i,a,b) for(int i=(a); i<(b); ++i) //#define REP(i,n) FOR(i,1,(n)+1) typedef vector<int> vi; #define pb push_back #define sz size() typedef pair<int,int> pii; #define mp make_pair #define st first #define nd second typedef long long ll; #define INF 1000000001 //#define VAR(n,v) typeof(v) n=(v) #define ALL(t) t.begin(),t.end() #define SC(a) scanf("%d", &a) #define GET(a) int a; SC(a) #define ISDEBUG 0 #define dprintf(...) if(ISDEBUG) \ {printf("\033[31m"); printf(__VA_ARGS__); printf("\033[0m");} template <class It> void dptab(It b, It e, const char* f="%d ") { if(ISDEBUG) { for(It it=b; it!=e; ++it) dprintf(f, *it); dprintf("\n"); }} enum EdgeDirection { INCOME, OUTCOME }; struct Edge { int v; EdgeDirection direction; explicit Edge(int v, EdgeDirection d) : v(v), direction(d) {} bool operator<(const Edge &e) const { if(v != e.v) return v < e.v; else return direction < e.direction; } }; set<Edge> graph_positives[1000]; set<Edge> graph_negatives[1000]; int parent[1000]; int income_negatives[1000]; int outcome_positives[1000]; int n; void dfs(int vertex, const set<int> &vertices, vector<bool> &visited, set<int> &subtree) { visited[vertex] = true; subtree.insert(vertex); for(const auto &edge : graph_positives[vertex]) { if(!visited[edge.v] && vertices.count(edge.v)) { dfs(edge.v, vertices, visited, subtree); } } } bool crawl_graph(int director, const set<int> &vertices) { if(vertices.empty()) { return true; } dprintf("\nvertices: "); dptab(ALL(vertices)); int new_director = -1; for(auto const &vertex : vertices) { if(0 == income_negatives[vertex] && 0 == outcome_positives[vertex]) { new_director = vertex; break; } } if(-1 == new_director) { dprintf("FALSE!\n"); for(auto const &vertex : vertices) { dprintf(" income_neg[%d] = %d -> ", vertex, income_negatives[vertex]); dptab(ALL(graph_negatives[vertex])); dprintf(" outcome_pos[%d] = %d\n", vertex, outcome_positives[vertex]); } return false; } parent[new_director] = director; dprintf("new director: %d\n", new_director); for(auto const &edge : graph_positives[new_director]) { dprintf("erasing: %d\n", edge.v); assert(edge.direction == INCOME); graph_positives[edge.v].erase(Edge(new_director, OUTCOME)); --outcome_positives[edge.v]; } //graph_positives[new_director].clear(); //TODO: remove vector<bool> visited(n, 0); for(auto const &vertex : vertices) { if(!visited[vertex] && vertex != new_director) { set<int> subtree; dprintf("dfs:"); dfs(vertex, vertices, visited, subtree); dprintf("\n"); dprintf("subtree: "); dptab(ALL(subtree)); for(auto const &subtree_vertex : subtree) { set<Edge> updated_negatives; for(auto const &edge : graph_negatives[subtree_vertex]) { if(subtree.count(edge.v)) { updated_negatives.insert(edge); } else { if(edge.direction == INCOME) { graph_negatives[edge.v].erase(Edge(subtree_vertex, OUTCOME)); --income_negatives[subtree_vertex]; } else { graph_negatives[edge.v].erase(Edge(subtree_vertex, INCOME)); --income_negatives[edge.v]; } } } graph_negatives[subtree_vertex] = updated_negatives; } bool result = crawl_graph(new_director, subtree); if(!result) { return false; } } } return true; } int main() { SC(n); GET(m); FOR(i,0,n) { parent[i] = -1; } while(m--) { int u, v; char c; scanf("%d %d %c", &u, &v, &c); --u, --v; dprintf("%d %d %c\n", u, v, c); if ('T' == c) { graph_positives[u].insert(Edge(v, OUTCOME)); graph_positives[v].insert(Edge(u, INCOME)); ++outcome_positives[u]; } else { graph_negatives[u].insert(Edge(v, OUTCOME)); graph_negatives[v].insert(Edge(u, INCOME)); ++income_negatives[v]; } } set<int> vertices; FOR(i,0,n) { vertices.insert(i); } bool result = crawl_graph(-1, vertices); if(!result) { printf("NIE\n"); } else { if(ISDEBUG) { printf("TAK\n"); } else { FOR(i,0,n) { printf("%d\n", parent[i] + 1); } } } return 0; } |