1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#include<cstdio>
#include<vector>
#define PB push_back
using namespace std;

int n, m, a, b;
char c;

vector<int> v[1010];
vector<int> v1[1010];
vector<int> v2[1010];
int ancestors[1010];

vector<int> parents[1010];
vector<int> children[1010];
bool is_child[1010][1010];

vector<int> not_children[1010];
bool is_not_child[1010][1010];

vector<int> to_add[1010];
bool is_in_actual[1010][1010];
vector<int> actual[1010];
int is_used[1010][1010];
bool added[1010];

int parent[1010];

void find_children(int x, int y){
	for(int i = 0; i < v1[y].size(); ++i){
		int act = v1[y][i];
		if(!is_child[x][act]){
			is_child[x][act] = true;
			children[x].PB(act);
			ancestors[act]++;
			parents[act].PB(x);
			//printf("%d is child of %d\n", act, x);
			find_children(x, act);
			}
		}
	}
int find_root(){
	for(int i = 1; i <= n; ++i)
		if(!ancestors[i] && !not_children[i].size())
			return i;
	return -1;
	}
void nie(){
	printf("NIE\n");
	}
void find_subtree(int root, int x, int sub){
   is_used[root][x] = sub;
   actual[root].PB(x);
   is_in_actual[root][x] = true;
   //printf("%d ",x);
   for(int i = 0; i < v[x].size(); ++i){
      int act = v[x][i];
      if(!added[act] && !is_used[root][act]){
         find_subtree(root, act, sub);
         }
      }
   }
int find_next_root(int root){
   bool can_be;
   for(int i = 0; i < actual[root].size(); ++i){
      int now = actual[root][i], siz;
      can_be = true;
      for(int j = 0; j < parents[now].size();){
         siz = parents[now].size();
         //printf("checking parentage: %d -> %d\n", parents[now][j], now);
         if(!is_in_actual[root][parents[now][j]]){
            if(siz==1){
               parents[now].clear();
               break;
               }
            else{
               parents[now][0] = parents[now][siz-1];
               parents[now].pop_back();
               }
            }
         else{
            can_be = false;
            //printf("err\n");
            break;
            }
         }
      for(int j = 0; j < not_children[now].size();){
         siz = not_children[now].size();
         //printf("checking notchildrenage: %d -> %d\n", not_children[now][j], now);
         if(!is_in_actual[root][not_children[now][j]]){
            if(siz==1){
               not_children[now].clear();
               break;
               }
            else{
               not_children[now][0] = not_children[now][siz-1];
               not_children[now].pop_back();
               }
            }
         else{
            can_be = false;
            //printf("err\n");
            break;
            }
         }
      if(can_be)
         return now;
      }
   return -1;
   }
bool make_tree(int root){
   //printf("making tree of %d:\n",root);
   //printf("to add: ");for(int i=0;i<to_add[root].size();++i)printf(" %d",to_add[root][i]);printf("\n");
	if(to_add[root].size() == 0){
		return true;
      }
	if(to_add[root].size() == 1){
		parent[to_add[root][0]] = root;
		return true;
		}
   int subtree = 1;
   for(int i = 0; i < to_add[root].size(); ++i){
      int act = to_add[root][i];
      if(!is_used[root][act]){
         for(int j = 0; j < actual[root].size(); ++j)
            is_in_actual[root][actual[root][j]] = false;
         actual[root].clear();
         //printf("subtree of %d #%d: \n",root, subtree);
         find_subtree(root, act, subtree);//printf("\n");
         int next_root = find_next_root(root);
         if(next_root == -1)
            return false;
         //printf("next root: %d\n", next_root);
         parent[next_root] = root;
         added[next_root] = true;
         for(int j = 0; j < actual[root].size(); ++j)
            if(actual[root][j] != next_root)
               to_add[next_root].PB(actual[root][j]);
         if(!make_tree(next_root))
            return false;
         }
      }
   return true;
	}
void solve(){
	for(int i = 1; i <= n; ++i)
		find_children(i, i);
	for(int i = 1; i <= n; ++i){
		for(int j = 1; j <= n; ++j){
			if(is_child[i][j] && is_not_child[i][j]){
				nie();
				return;
				}
			}
		}
	int root = find_root();
	if(root == -1){
		nie();
		return;
		}
	for(int i = 1; i <= n; ++i){
		if(i != root)
			to_add[root].PB(i);
		}
   added[root] = true;
   //printf("first root: %d\n",root);
	if(make_tree(root)){
		for(int i = 1; i <= n; ++i)
			printf("%d\n", parent[i]);
		}
	else
		nie();
	}

int main(){
	scanf("%d %d",&n, &m);
	for(int i = 0; i < m; ++i){
		scanf("%d %d %c", &a, &b, &c);
		if(c == 'T'){
			v1[b].PB(a);
			v[a].PB(b);
			v[b].PB(a);
			}
		else{
			is_not_child[b][a] = true;
			not_children[b].PB(a);
			}
		}
	for(int i = 1; i <= n; ++i)
		is_not_child[i][i] = true;
	solve();
	}
/*
4 5
2 1 T
3 1 T
4 2 T
4 3 T
2 3 N

4 5
2 1 T
3 1 T
4 2 T
4 3 T
3 2 N
*/