1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#include <cstdio>
#include <vector>
#include <algorithm>

#include "cielib.h"

typedef int smallnum;

int main() {
  smallnum d = podajD();
  smallnum r = podajR();


  std::vector<smallnum> lower_bounds(d, 0);
  std::vector<smallnum> upper_bounds(d, r);
  std::vector<smallnum> distances(d, r);

  std::vector<smallnum> responses1(d, 0);
  std::vector<smallnum> responses2(d, 0);

  bool converged = false;

  // Main loop
  while (!converged) {
    // printf("=============== DEBUG - START ROUND ================\n");

    // Step 1. Let's make first jumps
    for (smallnum jump_dimension = 0; jump_dimension < d; jump_dimension++) {
      std::vector<smallnum> current_pos(d);
      std::vector<smallnum> jump_pos(d);

      smallnum jump_distance = upper_bounds[jump_dimension] - lower_bounds[jump_dimension];
      if (jump_distance == 0) {continue;}

      for (smallnum i = 0; i < d; i++) {
        if (i == jump_dimension) {
          current_pos[i] = lower_bounds[i];
          jump_pos[i] = upper_bounds[i];
        } else {
          current_pos[i] = (lower_bounds[i] + upper_bounds[i]) / 2;
          jump_pos[i] = (lower_bounds[i] + upper_bounds[i]) / 2;
        }
      }

      czyCieplo(current_pos.data());

      responses1[jump_dimension] = czyCieplo(jump_pos.data());

      // printf("DEBUG - jump dimension %d response %d\n", jump_dimension, responses1[jump_dimension]);

      if (jump_distance % 2 == 0) {
        responses2[jump_dimension] = czyCieplo(current_pos.data());
        // printf("DEBUG - jump dimension %d response 2 %d\n", jump_dimension, responses2[jump_dimension]);
      }

    }

    // Step 2. Let's narrow down our selection
    for (smallnum jump_dimension = 0; jump_dimension < d; jump_dimension++) {
      smallnum jump_distance = upper_bounds[jump_dimension] - lower_bounds[jump_dimension];
      if (jump_distance == 0) {continue;}

      if (jump_distance == 2) {
        if (responses1[jump_dimension]) {
          lower_bounds[jump_dimension] = upper_bounds[jump_dimension];
        } else if (responses2[jump_dimension]) {
          upper_bounds[jump_dimension] = lower_bounds[jump_dimension];
        } else {
          smallnum sum = lower_bounds[jump_dimension] + upper_bounds[jump_dimension];
          upper_bounds[jump_dimension] = sum / 2;
          lower_bounds[jump_dimension] = sum / 2;
        }

        continue;
      }

      if (responses1[jump_dimension]) {
        smallnum sum = lower_bounds[jump_dimension] + upper_bounds[jump_dimension];
        lower_bounds[jump_dimension] = sum / 2;
        lower_bounds[jump_dimension] = std::min(lower_bounds[jump_dimension], upper_bounds[jump_dimension] - 2);
      } else {
        if (jump_distance % 2 == 0) {
          if (responses2[jump_dimension]) {
            smallnum sum = lower_bounds[jump_dimension] + upper_bounds[jump_dimension];

            if (sum % 2 == 1) {
              upper_bounds[jump_dimension] = (sum + 1) / 2;
              upper_bounds[jump_dimension] = std::max(upper_bounds[jump_dimension], lower_bounds[jump_dimension] + 2);
            } else {
              upper_bounds[jump_dimension] = sum / 2;
            }
          } else {
            // We are exactly in the middle
            smallnum sum = lower_bounds[jump_dimension] + upper_bounds[jump_dimension];
            upper_bounds[jump_dimension] = sum / 2;
            lower_bounds[jump_dimension] = sum / 2;
          }
        } else {
          smallnum sum = lower_bounds[jump_dimension] + upper_bounds[jump_dimension];

          if (sum % 2 == 1) {
            upper_bounds[jump_dimension] = (sum + 1) / 2;
            upper_bounds[jump_dimension] = std::max(upper_bounds[jump_dimension], lower_bounds[jump_dimension] + 2);
          } else {
            upper_bounds[jump_dimension] = sum / 2;
            upper_bounds[jump_dimension] = std::max(upper_bounds[jump_dimension], lower_bounds[jump_dimension] + 2);
          }
        }

      }
    }

    // printf("DEBUG - bounds after jumps\n");
    // for (unsigned long i = 0; i < lower_bounds.size(); i++) {
    //   printf("%d, ", lower_bounds[i]);
    // }
    // printf("\n");

    // for (unsigned long i = 0; i < upper_bounds.size(); i++) {
    //   printf("%d, ", upper_bounds[i]);
    // }
    // printf("\n");

    // Step 3. check for convergence
    converged = true;

    for (smallnum check_dimension = 0; check_dimension < d; check_dimension++) {
      if (upper_bounds[check_dimension] != lower_bounds[check_dimension]) {
        converged = false;
      }
    }
  }

  znalazlem(upper_bounds.data());

  return 0;
}