#include <algorithm> #include <cassert> #include <cstdio> #include <vector> using namespace std; using ll = long long; using pll = pair<ll, ll>; // z biblioteczki UJ namespace kody { using node_size_t = int; //suma wszystkich node_size() powinna sie miescic! using T = pair<ll, pll>; struct SplayTree { #define _subtree_size(x) ((x)?(x)->subtree : 0) struct Node{ T val; Node* left_, *right_, *p_; //tych (i dalszych) pol nie dotykac bezposrednio Node(const T& v): val(v), left_(nullptr), right_(nullptr), p_(nullptr){ resize(); } void set_left(Node *x){ push(); left_ = x; if(x) x->p_ = this; resize(); } void set_right(Node *x){ push(); right_ = x; if(x) x->p_ = this; resize();} //template<> node_size_t SplayTree<KTH_TEST>::Node::node_size(){ ... } node_size_t node_size(){return 1;} node_size_t subtree; void resize(){ subtree = _subtree_size(left_) + _subtree_size(right_) + node_size(); } void push() { if (left_) { left_->val.second.first += val.second.first; left_->val.second.second += val.second.second; } else { val.first += val.second.second; } if (right_) { right_->val.second.first += val.second.first; // right_->val.second.second += val.second.second + val.second.first * (_subtree_size(left_) + 1); } val.first += val.second.first; val.second = {0, 0}; } void rotate() { Node *parent = p_; this->p_ = parent->p_; if(parent->p_) { if (parent==parent->p_->left_) parent->p_->set_left(this); else parent->p_->set_right(this); } if (this==parent->left_) { parent->set_left(this->right_); set_right(parent); } else { parent->set_right(this->left_); set_left(parent); } } void dump_inorder_(vector<T>&out){ /* DUMP */ push(); /* DUMP */ if(left_) left_->dump_inorder_(out); /* DUMP */ out.push_back(val); /* DUMP */ if(right_) right_->dump_inorder_(out); /* DUMP */ } /* DUMP */ void clear_(){ /* CLEAR */ if(left_) {left_->clear_(); delete left_;} /* CLEAR */ if(right_) {right_->clear_(); delete right_;} /* CLEAR */ } /* CLEAR */ } *root; void dump_inorder(vector<T>&out){ /* DUMP */ if(root) root->dump_inorder_(out); /* DUMP */ } /* DUMP */ SplayTree():root(nullptr){} //UWAGA - piszac deepcopy pamietaj o pushowaniu ~SplayTree(){ clear(); } /* CLEAR */ void clear(){ /* CLEAR */ if(!root) return; /* CLEAR */ root->clear_(); /* CLEAR */ delete root; /* CLEAR */ root = nullptr; /* CLEAR */ } Node* splay(Node *v) { //uwaga, zmienia korzen drzewa while(v->p_) { if (v->p_->p_) v->p_->p_->push(); v->p_->push(); v->push(); if (v->p_->p_ && ((v==v->p_->left_) == (v->p_==v->p_->p_->left_))) v->p_->rotate(); v->rotate(); } return root = v; } /* MULTISET */ Node* lower_bound(const T &x){ //zmienia korzen, NIEKONIECZNIE na wynik! Node *v = root, *res = nullptr, *prev = nullptr; while(v){ prev = v; if(v->val < x) v = v->right_; else { res = v; v = v->left_; } } if(prev) splay(prev); //XXX czy na pewno tak chcemy ? return res; } /* PATH */ // Pierwszy wierzcholek taki ze suma rozmiarow wierzcholkow w porzadku // inorder do tego wierzcholka wlacznie jest > k. Jesli rozmiary sa = 1, // to jest to k-ty wierzcholek w porzadku inorder. (Liczac od 0) Node *splay_kth(node_size_t k){ Node *v = root; if (_subtree_size(v) <= k) return nullptr; for(;;) { if(!v) return nullptr; v->push(); if (_subtree_size(v->left_) <= k && _subtree_size(v->left_) + v->node_size()>k){ return splay(v); } if (_subtree_size(v->left_) <= k) { k -= (v->node_size()+_subtree_size(v->left_)); v = v->right_; } else v = v->left_; } } void append_(Node* nw){ if(!nw) return; Node *v = root; while(v){ v->push(); if(v->right_) v = v->right_; else break; } if(v) v->set_right(nw); splay(nw); } void append(const T& val){ append_(new Node(val)); } void insert_at(node_size_t k, const T& val){ //val bedzie na ktej pozycji // (od zera). UWAGA - Jesli k jest duze, to val bedzie appendowane. // Jesli rozmiary wezlow nie sa jednostkowe, to val zostanie wsadzone // na najdalsza pozycje taka, ze suma elementow przed nia jest <= k if(!root){ append(val); return; } SplayTree st = split_from(k); append(val); extend(st); } SplayTree split_from(node_size_t k){ //odrywa podsciezke o ind. [k, k+1, ...] SplayTree res; if(!splay_kth(k)) return res; Node *left_ = root->left_; root->set_left(nullptr); root->resize(); if(left_) left_->p_ = nullptr; res.root = root; root = left_; return res; } void extend(SplayTree &rh){ //wchlania sciezke rh (dokleja na koniec) assert(this != &rh); if(!rh.root) return; if(!root) root = rh.root; else append_(rh.root); rh.root = nullptr; } void add(ll a, ll b) { root->val.second.first += a; root->val.second.second += b; } int lookup(ll a, ll b) { if (_subtree_size(root) == 1) return 1; int ret = _subtree_size(root); int cnt = 0; Node *n = root, *last; while (n) { last = n; n->push(); ll val = n->val.first; int cand = cnt + _subtree_size(n->left_); if (cand && a * (cand-1) + b >= val) { n = n->left_; ret = cand; } else { cnt += _subtree_size(n->left_) + 1; n = n->right_; } } splay(last); return ret; } }; } kody::SplayTree res; void update(int from, ll a, ll b) { // printf("from %d to %d: %lld %lld\n", from, to, a, b); res.insert_at(from, {0, {0, 0}}); auto suf = res.split_from(from); suf.add(a, b + a * (from-1)); suf.splay_kth(0)->val.first -= a; res.extend(suf); } int main() { int n; scanf("%d", &n); // n = 1000000; vector<pll> v(n); for (auto& i : v) { // i.first = rand() % 1000000; // i.second = (ll)(rand() % 1000000) * (rand() % 1000000); scanf("%lld %lld", &i.first, &i.second); } sort(v.begin(), v.end()); res.append({0, {0, 0}}); for (int i=0; i<n; i++) { int from = res.lookup(v[i].first, v[i].second); // printf("add %d(%d) %d %lld %lld\n", hi, from, i+1, v[i].first, v[i].second); update(from, v[i].first, v[i].second); if(0) { vector<pair<ll,pll>> out; out.reserve(n+1); res.dump_inorder(out); for (auto t : out) printf("%lld ", t.first); printf("\n"); } } vector<pair<ll,pll>> out; out.reserve(n+1); res.dump_inorder(out); ll sum = 0; for (int i=1; i<=n; i++) { sum += out[i].first; printf("%lld\n", sum); } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | #include <algorithm> #include <cassert> #include <cstdio> #include <vector> using namespace std; using ll = long long; using pll = pair<ll, ll>; // z biblioteczki UJ namespace kody { using node_size_t = int; //suma wszystkich node_size() powinna sie miescic! using T = pair<ll, pll>; struct SplayTree { #define _subtree_size(x) ((x)?(x)->subtree : 0) struct Node{ T val; Node* left_, *right_, *p_; //tych (i dalszych) pol nie dotykac bezposrednio Node(const T& v): val(v), left_(nullptr), right_(nullptr), p_(nullptr){ resize(); } void set_left(Node *x){ push(); left_ = x; if(x) x->p_ = this; resize(); } void set_right(Node *x){ push(); right_ = x; if(x) x->p_ = this; resize();} //template<> node_size_t SplayTree<KTH_TEST>::Node::node_size(){ ... } node_size_t node_size(){return 1;} node_size_t subtree; void resize(){ subtree = _subtree_size(left_) + _subtree_size(right_) + node_size(); } void push() { if (left_) { left_->val.second.first += val.second.first; left_->val.second.second += val.second.second; } else { val.first += val.second.second; } if (right_) { right_->val.second.first += val.second.first; // right_->val.second.second += val.second.second + val.second.first * (_subtree_size(left_) + 1); } val.first += val.second.first; val.second = {0, 0}; } void rotate() { Node *parent = p_; this->p_ = parent->p_; if(parent->p_) { if (parent==parent->p_->left_) parent->p_->set_left(this); else parent->p_->set_right(this); } if (this==parent->left_) { parent->set_left(this->right_); set_right(parent); } else { parent->set_right(this->left_); set_left(parent); } } void dump_inorder_(vector<T>&out){ /* DUMP */ push(); /* DUMP */ if(left_) left_->dump_inorder_(out); /* DUMP */ out.push_back(val); /* DUMP */ if(right_) right_->dump_inorder_(out); /* DUMP */ } /* DUMP */ void clear_(){ /* CLEAR */ if(left_) {left_->clear_(); delete left_;} /* CLEAR */ if(right_) {right_->clear_(); delete right_;} /* CLEAR */ } /* CLEAR */ } *root; void dump_inorder(vector<T>&out){ /* DUMP */ if(root) root->dump_inorder_(out); /* DUMP */ } /* DUMP */ SplayTree():root(nullptr){} //UWAGA - piszac deepcopy pamietaj o pushowaniu ~SplayTree(){ clear(); } /* CLEAR */ void clear(){ /* CLEAR */ if(!root) return; /* CLEAR */ root->clear_(); /* CLEAR */ delete root; /* CLEAR */ root = nullptr; /* CLEAR */ } Node* splay(Node *v) { //uwaga, zmienia korzen drzewa while(v->p_) { if (v->p_->p_) v->p_->p_->push(); v->p_->push(); v->push(); if (v->p_->p_ && ((v==v->p_->left_) == (v->p_==v->p_->p_->left_))) v->p_->rotate(); v->rotate(); } return root = v; } /* MULTISET */ Node* lower_bound(const T &x){ //zmienia korzen, NIEKONIECZNIE na wynik! Node *v = root, *res = nullptr, *prev = nullptr; while(v){ prev = v; if(v->val < x) v = v->right_; else { res = v; v = v->left_; } } if(prev) splay(prev); //XXX czy na pewno tak chcemy ? return res; } /* PATH */ // Pierwszy wierzcholek taki ze suma rozmiarow wierzcholkow w porzadku // inorder do tego wierzcholka wlacznie jest > k. Jesli rozmiary sa = 1, // to jest to k-ty wierzcholek w porzadku inorder. (Liczac od 0) Node *splay_kth(node_size_t k){ Node *v = root; if (_subtree_size(v) <= k) return nullptr; for(;;) { if(!v) return nullptr; v->push(); if (_subtree_size(v->left_) <= k && _subtree_size(v->left_) + v->node_size()>k){ return splay(v); } if (_subtree_size(v->left_) <= k) { k -= (v->node_size()+_subtree_size(v->left_)); v = v->right_; } else v = v->left_; } } void append_(Node* nw){ if(!nw) return; Node *v = root; while(v){ v->push(); if(v->right_) v = v->right_; else break; } if(v) v->set_right(nw); splay(nw); } void append(const T& val){ append_(new Node(val)); } void insert_at(node_size_t k, const T& val){ //val bedzie na ktej pozycji // (od zera). UWAGA - Jesli k jest duze, to val bedzie appendowane. // Jesli rozmiary wezlow nie sa jednostkowe, to val zostanie wsadzone // na najdalsza pozycje taka, ze suma elementow przed nia jest <= k if(!root){ append(val); return; } SplayTree st = split_from(k); append(val); extend(st); } SplayTree split_from(node_size_t k){ //odrywa podsciezke o ind. [k, k+1, ...] SplayTree res; if(!splay_kth(k)) return res; Node *left_ = root->left_; root->set_left(nullptr); root->resize(); if(left_) left_->p_ = nullptr; res.root = root; root = left_; return res; } void extend(SplayTree &rh){ //wchlania sciezke rh (dokleja na koniec) assert(this != &rh); if(!rh.root) return; if(!root) root = rh.root; else append_(rh.root); rh.root = nullptr; } void add(ll a, ll b) { root->val.second.first += a; root->val.second.second += b; } int lookup(ll a, ll b) { if (_subtree_size(root) == 1) return 1; int ret = _subtree_size(root); int cnt = 0; Node *n = root, *last; while (n) { last = n; n->push(); ll val = n->val.first; int cand = cnt + _subtree_size(n->left_); if (cand && a * (cand-1) + b >= val) { n = n->left_; ret = cand; } else { cnt += _subtree_size(n->left_) + 1; n = n->right_; } } splay(last); return ret; } }; } kody::SplayTree res; void update(int from, ll a, ll b) { // printf("from %d to %d: %lld %lld\n", from, to, a, b); res.insert_at(from, {0, {0, 0}}); auto suf = res.split_from(from); suf.add(a, b + a * (from-1)); suf.splay_kth(0)->val.first -= a; res.extend(suf); } int main() { int n; scanf("%d", &n); // n = 1000000; vector<pll> v(n); for (auto& i : v) { // i.first = rand() % 1000000; // i.second = (ll)(rand() % 1000000) * (rand() % 1000000); scanf("%lld %lld", &i.first, &i.second); } sort(v.begin(), v.end()); res.append({0, {0, 0}}); for (int i=0; i<n; i++) { int from = res.lookup(v[i].first, v[i].second); // printf("add %d(%d) %d %lld %lld\n", hi, from, i+1, v[i].first, v[i].second); update(from, v[i].first, v[i].second); if(0) { vector<pair<ll,pll>> out; out.reserve(n+1); res.dump_inorder(out); for (auto t : out) printf("%lld ", t.first); printf("\n"); } } vector<pair<ll,pll>> out; out.reserve(n+1); res.dump_inorder(out); ll sum = 0; for (int i=1; i<=n; i++) { sum += out[i].first; printf("%lld\n", sum); } return 0; } |