1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <sstream>
#include <set>
#include <map>
#include <vector>
#include <list>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
#include <queue>
#include <bitset>		//UWAGA - w czasie kompilacji musi byc znany rozmiar wektora - nie mozna go zmienic
#include <cassert>
#include <iomanip>		//do setprecision
#include <ctime>
#include <complex>
using namespace std;

#define FOR(i,b,e) for(int i=(b);i<(e);++i)
#define FORQ(i,b,e) for(int i=(b);i<=(e);++i)
#define FORD(i,b,e) for(int i=(b)-1;i>=(e);--i)
#define REP(x, n) for(int x = 0; x < (n); ++x)

#define ST first
#define ND second
#define PB push_back
#define MP make_pair
#define LL long long
#define ULL unsigned LL
#define LD long double

const double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342;

#define MR 1000010
#define MT 2100000

pair < int, LL > t[MR];

int nxt[MR], prv[MR];

int tSize;	// rozmiar drzewa

struct node
{
	int p, k;
	LL ndm, v;
	int ind;	// indeks realizujacy max
}tree[MT];

void build(int nr, int p, int k)
{
	tree[nr].p = p;
	tree[nr].k = k;
	if (p < k)
	{
		build(2 * nr, p, (p + k) / 2);
		build(2 * nr + 1, (p + k) / 2 + 1, k);
		if (tree[2 * nr].v > tree[2 * nr + 1].v)
		{
			tree[nr].v = tree[2 * nr].v;
			tree[nr].ind = tree[2 * nr].ind;
		}
		else
		{
			tree[nr].v = tree[2 * nr + 1].v;
			tree[nr].ind = tree[2 * nr + 1].ind;
		}
		return;
	}
	// na poczatku tylko b ma znaczenie
	tree[nr].v = t[p].second;
	tree[nr].ind = p;
}

// funkcja dodajaca na przedziale p..k
int p, k;
LL v;
// ta funkcja moze tez posluzyc do usuniecia wierzcholka
// masz w korzeniu zapisana max wartosc oraz indeks
// ustaw v = -tree[1].v, p = k = ind;
void add(int nr)
{
	if (tree[nr].p > k || tree[nr].k < p)
		return;

	if (tree[nr].p >= p && tree[nr].k <= k)
	{
		tree[nr].v += v;
		tree[nr].ndm += v;

		return;
	}

	// musisz spuscic w dol nadmiar
	REP(i, 2)
	{
		tree[2 * nr + i].v += tree[nr].ndm;
		tree[2 * nr + i].ndm += tree[nr].ndm;
	}
	tree[nr].ndm = 0;

	REP(i, 2)
	{
		add(2 * nr + i);
	}

	if (tree[2 * nr].v > tree[2 * nr + 1].v)
	{
		tree[nr].v = tree[2 * nr].v;
		tree[nr].ind = tree[2 * nr].ind;
	}
	else
	{
		tree[nr].v = tree[2 * nr + 1].v;
		tree[nr].ind = tree[2 * nr + 1].ind;
	}
}

int main()
{
	int n;
	scanf("%d", &n);
	REP(i, n)
	{
		scanf("%d%lld", &t[i + 1].first, &t[i + 1].second);
	}
	sort(t + 1, t + n + 1);

	tSize = 1;
	while (tSize < n)
		tSize <<= 1;
	build(1, 1, tSize);

	FOR(i, 1, n)
	{
		nxt[i] = i + 1;
		prv[i + 1] = i;
	}

	LL res = 0;
	FORQ(i, 1, n)
	{
		int ind = tree[1].ind;
		v = tree[1].v;
		res += v;

		// remove value from the tree
		v = -v;
		p = k = ind;
		add(1);

		int strt = nxt[ind];
		nxt[prv[ind]] = strt;
		prv[strt] = prv[ind];

		// add the value to the sufixes of those before removed
		v = t[ind].first;
		p = 1;
		k = prv[ind];
		if (k)
			add(1);

		// you have to modify the values one by one for the other
		while (strt)
		{
			v = t[strt].first;
			p = k = strt;
			add(1);
			strt = nxt[strt];
		}

		printf("%lld\n", res);
	}

	return 0;
}