1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Krzysztof Małysa
#include <bits/stdc++.h>
using namespace std;

#define FOR(i,a,n) for (int i = (a), i##__ = (n); i <= i##__; ++i)
#define REP(i,n) FOR(i,0,n-1)
#define FORD(i,a,n) for (int i = (a), i##__ = (n); i >= i##__; --i)
#define ALL(x) x.begin(), x.end()
#define EB emplace_back
#define ST first
#define ND second
#define OO(A) template<class... T> ostream& operator<<(ostream& os, const A<T...>& x) { return __o(os, ALL(x)); }
#define SZ(x) ((int)x.size())

typedef long long LL;
typedef pair<int, int> PII;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<PII> VPII;

template<class A, class B> ostream& operator<<(ostream&, const pair<A, B>&);
template<class I> ostream& __o(ostream&, I, I);
template<class T, size_t N> ostream& operator<<(ostream& os, const array<T, N>& x) { return __o(os, ALL(x)); }
OO(vector) OO(deque) OO(set) OO(multiset) OO(map) OO(multimap)
template<class A, class B> ostream& operator<<(ostream& os, const pair<A, B>& p) {
	return os << "(" << p.ST << ", " << p.ND << ")";
}
template<class I> ostream& __o(ostream& os, I a, I b) {
	os << "{";
	for (; a != b;)
		os << *a++, cerr << (a == b ? "" : " ");
	return os << "}";
}
template<class I> ostream& __d(ostream& os, I a, I b) {
	os << "{\n";
	for (I c = a; a != b; ++a)
		os << "  " << distance(c, a) << ": " << *a << endl;
	return os << "}";
}
template<class... T> void __e(T&&... a) {
	int t[] = {(cerr << forward<T>(a), 0)...}; (void)t;
	cerr << endl;
}

template<class A, class B> void mini(A& a, B&& b) { if (b < a) a = b; }
template<class A, class B> void maxi(A& a, B&& b) { if (b > a) a = b; }
int ceil2(int x) { return 1 << (sizeof(x) * 8 - __builtin_clz(x - 1)); }

#ifdef DEBUG
# define D(...) __VA_ARGS__
#else
# define D(...)
#endif

#define LOG(x) D(cerr << #x ": " << x)
#define LOGN(x) D(LOG(x) << endl)
#define DUMP(x) D(cerr << #x ": ", __d(cerr, ALL(x)) << endl)
#define E(...) D(__e(__VA_ARGS__))
#define endl '\n'
constexpr char nl = '\n';
// End of templates

#include "cielib.h"

static inline bool czyCieplo(VI& v) { return czyCieplo(v.data()); }
static inline void znalazlem(VI& v) { znalazlem(v.data()); }

int main() {
	int d = podajD();
	int k = podajK();
	int r = podajR();
	assert(k >= d * 100);

	VI base(d, 0); // [0, 0, ..., 0]
	VI diffed = base;
	vector<bool> is_max(d);
	int maxes_collected = 0;
	while (maxes_collected < d) {
		E("=======================================");
		if (*max_element(ALL(diffed)) == r)
			break; // We cannot increase the max_value - it has reached the maximum, so there is nothing left to do

		assert(diffed == base);

		// diffed = base + [1, 1, ..., 1]
		for (int& x : diffed)
			++x;

		/* Find new maxes: 2 * (# of maxs found) * log d * czyCieplo()
		                  + 1 * log d * czyCieplo <<<< because we have to check whether there is any maximum to search for */
		// Increase (decrease the diff) current maxes by 1 to exclude them from searching
		// REP (i, d)
		// 	if (is_max[i])
		// 		++base[i];
		// Binary search
		for (;;) {
			LOGN(base);
			int down = 0, up = d;
			while (down < up) {
				int mid = (down + up) >> 1;
				E("(", down, " -> ", mid, " <- ", up, ")");
				// Check if there is a new max on the left side
				diffed = base;
				czyCieplo(base);
				// Add 1 to all (except maxes and left side - including x)
				FOR (i, 0, mid)
					if (is_max[i])
						++diffed[i];
				FOR (i, mid + 1, d - 1)
					++diffed[i];
				LOGN(diffed);

				if (czyCieplo(diffed)) // There is no new max in [0, mid]
					down = mid + 1;
				else
					up = mid;
			}

			if (up == d) // There is no new max
				break;

			E("found: ", up);
			if (is_max[up])
				goto break2;

			is_max[up] = true;
			++maxes_collected;
		}

		if (false) {
		break2:
			break;
		}

		// Update maxes
		REP (i, d)
			if (is_max[i])
				++base[i];

		diffed = base;
		LOGN(diffed);

		/* Equalize current maxes with next maxes */

		int down = (*min_element(ALL(diffed)) == 0 ? 0 : -1); // -1 to adjust if too much was added
		int up = r - *max_element(ALL(diffed));
		// 2d lg r * czyCieplo()
		base = diffed;
		// Search for lowest x for which czyCieplo(base + [x, x, ...]); czyCieplo(base + [x + 1, x + 1, ...]) == false
		while (down < up) {
			int mid = (down + up) >> 1;
			// E("{", down, " -> ", mid, " <- ", up, "}");
			REP (i, d)
				if (is_max[i])
					diffed[i] = base[i] + mid;

			assert(mid < up);

			czyCieplo(diffed);
			REP (i, d)
				if (is_max[i])
					++diffed[i];
			if (czyCieplo(diffed))
				down = mid + 1;
			else
				up = mid;
		}
		// Compute diffed = base + [up, up, ...]
		REP (i, d)
			if (is_max[i])
				diffed[i] = base[i] + up;

		base = diffed;
		LOGN(base);
	}

	VI old_base = base;

	// Run it from other side to cover stupid edge cases when there is 0 in the solution
	if (find(ALL(base), 0) != base.end() && *max_element(ALL(base)) < r) {
		// 2d * czyCieplo()
		VI base1(d, r);
		diffed.assign(d, r - 1);

		// Find true 0s
		REP (i, d) {
			if (base[i] != 0)
				continue;

			// Check if new true 0
			++diffed[i];
			czyCieplo(base1);
			if (!czyCieplo(diffed)) { // true 0
				--diffed[i];
				base[i] = -1;
			}
		}

		// The values in base are decreased by 1 now
		for (int& x : base)
			++x;
	}

	// 2 * czyCieplo()
	if (czyCieplo(old_base), !czyCieplo(base))
		base = move(old_base);

	// So in summary ((2 + 1)d log d + 2d log r + 2d + 2) times the function czyCieplo() is called

	LOGN(base);
	znalazlem(base);
	return 0;
}