#include "krazki.h" #include "message.h" #include <bits/stdc++.h> using namespace std; #define REP(i,n) for(int _n=n, i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define TRACE(x) cerr << "TRACE(" #x ")" << endl; #define DEBUG(x) cerr << #x << " = " << (x) << endl; typedef long long LL; const int INF = 1000000000; const LL INFLL = LL(INF) * LL(INF); template<class T> inline int size(const T&x) { return x.size(); } int NODE; int NNODES; template<class T> void Put(int node, const T&x) { static_assert(is_pod<T>(), "Put pod"); const char *p = reinterpret_cast<const char*>(&x); for(size_t i=0;i<sizeof(T);++i) PutChar(node, p[i]); } template<class T> void Put(int node, const vector<T> &x) { PutLL(node, x.size()); for(const T&a : x) Put(node, a); } template<class T> void SendTo(int node, const T&x) { Put(node, x); Send(node); } template<class T> void Get(int node, T &x) { static_assert(is_pod<T>(), "Get pod"); char *p = reinterpret_cast<char*>(&x); for(size_t i=0;i<sizeof(T);++i) p[i] = GetChar(node); } template<class T> void Get(int node, vector<T> &x) { x.resize(GetLL(node)); for(T &a : x) Get(node, a); } template<class T> int ReceiveFrom(int node, T &x) { node = Receive(node); Get(node, x); return node; } ///////// template<class T> class Array { public: explicit Array() : a(0), b(0), v() {} explicit Array(long long _a, long long _b) : a(_a), b(_b), v(_b - _a) {} void resize(long long _a, long long _b) { a = _a; b = _b; v.assign(_b - _a, T()); } void assign(long long _a, long long _b, const T &x) { a = _a; b = _b; v.assign(_b - _a, x); } T &operator[](long long x) { return v[x-a]; } const T &operator[](long long x) const { return v[x-a]; } long long beginIdx() const { return a; } long long endIdx() const { return b; } typename vector<T>::const_iterator begin() const { return v.begin(); } typename vector<T>::iterator begin() { return v.begin(); } typename vector<T>::const_iterator end() const { return v.end(); } typename vector<T>::iterator end() { return v.end(); } private: long long a, b; vector<T> v; }; LL numHoles; LL numDiscs; LL holeSize(LL x) { assert(x >= 0 && x < numHoles); return 2*HoleDiameter(numHoles - x)+1; } LL discSize(LL x) { assert(x >= 0 && x < numDiscs); return 2*DiscDiameter(1 + x); } struct Position { LL size; LL idx; }; inline bool operator<(const Position &a, const Position &b) { if(a.size != b.size) return a.size < b.size; return a.idx < b.idx; } struct Job { Position positionStart; Position positionEnd; Position holeStart; Position holeEnd; Position discStart; Position discEnd; }; vector<LL> equalSplit(const LL n, const int elems) { vector<LL> res(elems+1); FOR(i,0,elems) res[i] = i * n / elems; return res; } LL minHoleSize(const LL alpha, const LL beta) { LL res = std::numeric_limits<LL>::max(); for(LL i=alpha;i<beta;++i) { LL x = holeSize(i); res = min(res, x); } return res; } LL maxDiscSize(const LL alpha, const LL beta) { LL res = 0; for (LL i=alpha;i<beta;++i) { LL x = discSize(i); res = max(res, x); } return res; } LL ComputeJob(const Job &job) { Array<LL> holeSizes(job.holeStart.idx, job.holeEnd.idx); { LL a = job.holeEnd.size; for(LL i=job.holeEnd.idx-1; i>=job.holeStart.idx; --i) { a = min(a, holeSize(i)); holeSizes[i] = a; } } Array<LL> discSizes(job.discStart.idx, job.discEnd.idx); { LL a = job.discStart.size; for (LL i = job.discStart.idx; i < job.discEnd.idx; ++i) { a = max(a, discSize(i)); discSizes[i] = a; } } LL holeIdx = job.holeStart.idx; LL maxRaise = 0; for (LL discIdx = job.discStart.idx; discIdx < job.discEnd.idx; ++discIdx) { while (holeIdx < job.holeEnd.idx && discSizes[discIdx] > holeSizes[holeIdx]) { ++holeIdx; } Position p; p.idx = discIdx; p.size = discSizes[discIdx]; if (!(p < job.positionStart) && p < job.positionEnd) { LL raise = holeIdx - discIdx; maxRaise = max(maxRaise, raise); } } return maxRaise; } int main() { NNODES = NumberOfNodes(); NODE = MyNodeId(); numHoles = PipeHeight(); numDiscs = NumberOfDiscs(); if (NODE>=NNODES) return 0; const int NUM_PIECES = 10 * NNODES; vector<LL> holeCutpoints = equalSplit(numHoles, NUM_PIECES); vector<LL> discCutpoints = equalSplit(numDiscs, NUM_PIECES); // Phase 1: Compute min hole in each segments and max disc in each segment. { REP(i, size(holeCutpoints)-1) { if (i % NNODES == NODE) { const LL x = minHoleSize(holeCutpoints[i], holeCutpoints[i+1]); Put(0, x); } } REP(i, size(discCutpoints)-1) { if (i % NNODES == NODE) { const LL x = maxDiscSize(discCutpoints[i], discCutpoints[i+1]); Put(0, x); } } Send(0); } // Phase 2: Receive these messages at master, sort, distribute work. if (NODE == 0) { // Receive. REP(node, NNODES) { Receive(node); } vector<Position> holePositions; holePositions.reserve(size(holeCutpoints)); REP(i, size(holeCutpoints)) { Position p; p.idx = holeCutpoints[i]; if(i < size(holeCutpoints)-1) { Get(i % NNODES, p.size); } else { p.size = std::numeric_limits<LL>::max(); } holePositions.push_back(p); } vector<Position> discPositions; discPositions.reserve(size(discCutpoints)); REP(i, size(discCutpoints)) { Position p; p.idx = discCutpoints[i]; if(i>0) { Get((i-1) % NNODES, p.size); } else { p.size = 0; } discPositions.push_back(p); } // Prefix min/max. FORD(i, size(holePositions)-2, 0) { holePositions[i].size = min(holePositions[i].size, holePositions[i+1].size); } FOR(i, 1, size(discPositions)-1) { discPositions[i].size = max(discPositions[i].size, discPositions[i-1].size); } // Dump all positions together and split work. vector<Position> allPositions = holePositions; for(const Position &p : discPositions) allPositions.push_back(p); sort(allPositions.begin(), allPositions.end()); vector<LL> positionCutpoints = equalSplit(size(allPositions)-1, NNODES); REP(node, NNODES) { Job job; job.positionStart = allPositions[positionCutpoints[node]]; job.positionEnd = allPositions[positionCutpoints[node+1]]; auto holeIt = upper_bound(holePositions.begin(), holePositions.end(), job.positionStart); if (holeIt != holePositions.begin()) --holeIt; job.holeStart = *holeIt; holeIt = lower_bound(holePositions.begin(), holePositions.end(), job.positionEnd); if (holeIt == holePositions.end()) --holeIt; job.holeEnd = *holeIt; auto discIt = upper_bound(discPositions.begin(), discPositions.end(), job.positionStart); if (discIt != discPositions.begin()) --discIt; job.discStart = *discIt; discIt = lower_bound(discPositions.begin(), discPositions.end(), job.positionEnd); if (discIt == discPositions.end()) --discIt; job.discEnd = *discIt; SendTo(node, job); } } // Phase 3: Receive jobs and perform them. { Job job; ReceiveFrom(0, job); LL biggestHeightGain = ComputeJob(job); SendTo(0, biggestHeightGain); } // Phase 4: Summarize results and print. if (NODE == 0) { LL biggestHeightGain = 0; REP(node, NNODES) { LL x; ReceiveFrom(node, x); biggestHeightGain = max(biggestHeightGain, x); } LL res = numHoles - numDiscs + 1 - biggestHeightGain; if(res<0) res = 0; cout << res << '\n'; } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | #include "krazki.h" #include "message.h" #include <bits/stdc++.h> using namespace std; #define REP(i,n) for(int _n=n, i=0;i<_n;++i) #define FOR(i,a,b) for(int i=(a),_b=(b);i<=_b;++i) #define FORD(i,a,b) for(int i=(a),_b=(b);i>=_b;--i) #define TRACE(x) cerr << "TRACE(" #x ")" << endl; #define DEBUG(x) cerr << #x << " = " << (x) << endl; typedef long long LL; const int INF = 1000000000; const LL INFLL = LL(INF) * LL(INF); template<class T> inline int size(const T&x) { return x.size(); } int NODE; int NNODES; template<class T> void Put(int node, const T&x) { static_assert(is_pod<T>(), "Put pod"); const char *p = reinterpret_cast<const char*>(&x); for(size_t i=0;i<sizeof(T);++i) PutChar(node, p[i]); } template<class T> void Put(int node, const vector<T> &x) { PutLL(node, x.size()); for(const T&a : x) Put(node, a); } template<class T> void SendTo(int node, const T&x) { Put(node, x); Send(node); } template<class T> void Get(int node, T &x) { static_assert(is_pod<T>(), "Get pod"); char *p = reinterpret_cast<char*>(&x); for(size_t i=0;i<sizeof(T);++i) p[i] = GetChar(node); } template<class T> void Get(int node, vector<T> &x) { x.resize(GetLL(node)); for(T &a : x) Get(node, a); } template<class T> int ReceiveFrom(int node, T &x) { node = Receive(node); Get(node, x); return node; } ///////// template<class T> class Array { public: explicit Array() : a(0), b(0), v() {} explicit Array(long long _a, long long _b) : a(_a), b(_b), v(_b - _a) {} void resize(long long _a, long long _b) { a = _a; b = _b; v.assign(_b - _a, T()); } void assign(long long _a, long long _b, const T &x) { a = _a; b = _b; v.assign(_b - _a, x); } T &operator[](long long x) { return v[x-a]; } const T &operator[](long long x) const { return v[x-a]; } long long beginIdx() const { return a; } long long endIdx() const { return b; } typename vector<T>::const_iterator begin() const { return v.begin(); } typename vector<T>::iterator begin() { return v.begin(); } typename vector<T>::const_iterator end() const { return v.end(); } typename vector<T>::iterator end() { return v.end(); } private: long long a, b; vector<T> v; }; LL numHoles; LL numDiscs; LL holeSize(LL x) { assert(x >= 0 && x < numHoles); return 2*HoleDiameter(numHoles - x)+1; } LL discSize(LL x) { assert(x >= 0 && x < numDiscs); return 2*DiscDiameter(1 + x); } struct Position { LL size; LL idx; }; inline bool operator<(const Position &a, const Position &b) { if(a.size != b.size) return a.size < b.size; return a.idx < b.idx; } struct Job { Position positionStart; Position positionEnd; Position holeStart; Position holeEnd; Position discStart; Position discEnd; }; vector<LL> equalSplit(const LL n, const int elems) { vector<LL> res(elems+1); FOR(i,0,elems) res[i] = i * n / elems; return res; } LL minHoleSize(const LL alpha, const LL beta) { LL res = std::numeric_limits<LL>::max(); for(LL i=alpha;i<beta;++i) { LL x = holeSize(i); res = min(res, x); } return res; } LL maxDiscSize(const LL alpha, const LL beta) { LL res = 0; for (LL i=alpha;i<beta;++i) { LL x = discSize(i); res = max(res, x); } return res; } LL ComputeJob(const Job &job) { Array<LL> holeSizes(job.holeStart.idx, job.holeEnd.idx); { LL a = job.holeEnd.size; for(LL i=job.holeEnd.idx-1; i>=job.holeStart.idx; --i) { a = min(a, holeSize(i)); holeSizes[i] = a; } } Array<LL> discSizes(job.discStart.idx, job.discEnd.idx); { LL a = job.discStart.size; for (LL i = job.discStart.idx; i < job.discEnd.idx; ++i) { a = max(a, discSize(i)); discSizes[i] = a; } } LL holeIdx = job.holeStart.idx; LL maxRaise = 0; for (LL discIdx = job.discStart.idx; discIdx < job.discEnd.idx; ++discIdx) { while (holeIdx < job.holeEnd.idx && discSizes[discIdx] > holeSizes[holeIdx]) { ++holeIdx; } Position p; p.idx = discIdx; p.size = discSizes[discIdx]; if (!(p < job.positionStart) && p < job.positionEnd) { LL raise = holeIdx - discIdx; maxRaise = max(maxRaise, raise); } } return maxRaise; } int main() { NNODES = NumberOfNodes(); NODE = MyNodeId(); numHoles = PipeHeight(); numDiscs = NumberOfDiscs(); if (NODE>=NNODES) return 0; const int NUM_PIECES = 10 * NNODES; vector<LL> holeCutpoints = equalSplit(numHoles, NUM_PIECES); vector<LL> discCutpoints = equalSplit(numDiscs, NUM_PIECES); // Phase 1: Compute min hole in each segments and max disc in each segment. { REP(i, size(holeCutpoints)-1) { if (i % NNODES == NODE) { const LL x = minHoleSize(holeCutpoints[i], holeCutpoints[i+1]); Put(0, x); } } REP(i, size(discCutpoints)-1) { if (i % NNODES == NODE) { const LL x = maxDiscSize(discCutpoints[i], discCutpoints[i+1]); Put(0, x); } } Send(0); } // Phase 2: Receive these messages at master, sort, distribute work. if (NODE == 0) { // Receive. REP(node, NNODES) { Receive(node); } vector<Position> holePositions; holePositions.reserve(size(holeCutpoints)); REP(i, size(holeCutpoints)) { Position p; p.idx = holeCutpoints[i]; if(i < size(holeCutpoints)-1) { Get(i % NNODES, p.size); } else { p.size = std::numeric_limits<LL>::max(); } holePositions.push_back(p); } vector<Position> discPositions; discPositions.reserve(size(discCutpoints)); REP(i, size(discCutpoints)) { Position p; p.idx = discCutpoints[i]; if(i>0) { Get((i-1) % NNODES, p.size); } else { p.size = 0; } discPositions.push_back(p); } // Prefix min/max. FORD(i, size(holePositions)-2, 0) { holePositions[i].size = min(holePositions[i].size, holePositions[i+1].size); } FOR(i, 1, size(discPositions)-1) { discPositions[i].size = max(discPositions[i].size, discPositions[i-1].size); } // Dump all positions together and split work. vector<Position> allPositions = holePositions; for(const Position &p : discPositions) allPositions.push_back(p); sort(allPositions.begin(), allPositions.end()); vector<LL> positionCutpoints = equalSplit(size(allPositions)-1, NNODES); REP(node, NNODES) { Job job; job.positionStart = allPositions[positionCutpoints[node]]; job.positionEnd = allPositions[positionCutpoints[node+1]]; auto holeIt = upper_bound(holePositions.begin(), holePositions.end(), job.positionStart); if (holeIt != holePositions.begin()) --holeIt; job.holeStart = *holeIt; holeIt = lower_bound(holePositions.begin(), holePositions.end(), job.positionEnd); if (holeIt == holePositions.end()) --holeIt; job.holeEnd = *holeIt; auto discIt = upper_bound(discPositions.begin(), discPositions.end(), job.positionStart); if (discIt != discPositions.begin()) --discIt; job.discStart = *discIt; discIt = lower_bound(discPositions.begin(), discPositions.end(), job.positionEnd); if (discIt == discPositions.end()) --discIt; job.discEnd = *discIt; SendTo(node, job); } } // Phase 3: Receive jobs and perform them. { Job job; ReceiveFrom(0, job); LL biggestHeightGain = ComputeJob(job); SendTo(0, biggestHeightGain); } // Phase 4: Summarize results and print. if (NODE == 0) { LL biggestHeightGain = 0; REP(node, NNODES) { LL x; ReceiveFrom(node, x); biggestHeightGain = max(biggestHeightGain, x); } LL res = numHoles - numDiscs + 1 - biggestHeightGain; if(res<0) res = 0; cout << res << '\n'; } } |