#include <cstdio> #include <set> #include <iostream> #include <algorithm> #include <string> #include <vector> #include <string.h> #include <stdio.h> // TODO: Maybe comment this out before submit. //#define DBG_CHECKS //#define DBG_FULL #ifdef DBG_FULL #include <sys/types.h> #include <unistd.h> #endif // TODO: UWAGA NA TO PRZED WYSLANIEM #include "message.h" #include "krazki.h" #define deb(x) cout << #x << " = " << x << endl; using namespace std; // Dwa z najczesciej uzywanych typow o dlugich nazwach // - ich skrocenie jest bardzo istotne typedef vector<int> VI; typedef long long LL; // W programach bardzo rzadko mozna znalezc w pelni zapisana instrukcje petli. // Zamiast niej wykorzystywane sa trzy nastepujace makra: // FOR - petla zwiekszajaca zmienna x od b do e wlacznie #define FOR(x, b, e) for(int x = b; x <= (e); ++x) // FORD - petla zmniejszajaca zmienna x od b do e wlacznie #define FORD(x, b, e) for(int x = b; x >= (e); --x) // REP - petla zwiekszajaca zmienna x od 0 do n. Jest ona bardzo czesto // wykorzystywana do konstruowania i przegladania struktur danych #define REP(x, n) for(int x = 0; x < (n); ++x) // Makro VAR(v,n) deklaruje nowa zmienna o nazwie v oraz typie i wartosci // zmiennej n. Jest ono czesto wykorzystywane podczas operowania na // iteratorach struktur danych z biblioteki STL, ktorych nazwy typow sa bardzo dlugie #define VAR(v, n) __typeof(n) v = (n) // ALL(c) reprezentuje pare iteratorow wskazujacych odpowiednio na pierwszy // i za ostatni element w strukturach danych STL. Makro to jest bardzo // przydatne chociazby w przypadku korzystania z funkcji sort, ktora jako // parametry przyjmuje pare iteratorow reprezentujacych przedzial // elementow do posortowania #define ALL(c) (c).begin(), (c).end() // Ponizsze makro sluzy do wyznaczania rozmiaru struktur danych STL. // Uzywa sie go w programach, zamiast pisac po prostu x.size() ze wzgledu na to, // iz wyrazenie x.size() jest typu unsigned int i w przypadku porownywania // z typem int w procesie kompilacji generowane jest ostrzezenie #define SIZE(x) ((int)(x).size()) // Bardzo pozyteczne makro sluzace do iterowania po wszystkich elementach // w strukturach danych STL #define FOREACH(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i) // Skrot - zamiast pisac push_back podczas wstawiania elementow na koniec // struktury danych, takiej jak vector, wystarczy napisac PB #define PB push_back // Podobnie - zamiast first bedziemy pisali po prostu ST #define ST first // a zamiast second - ND #define ND second struct Sharding { int usedNodes; int d, n; Sharding(int n) { this->n = n; usedNodes = min(NumberOfNodes(), n); d = n / usedNodes; } int ShardCnt() { return usedNodes; } void GetRange(int nr, int &begin, int &end) { // if nr == 0, (0, k) // if nr == Last() (s, n) #ifdef DBG_CHECKS if (nr > usedNodes - 1) cerr << "ERROR: nr > usedNodes - 1" << endl; #endif begin = nr * d; end = (nr + 1) * d; if (nr == usedNodes - 1) end = n; } void MyRange(int &begin, int &end) { GetRange(MyNodeId(), begin, end); } bool ImUsed() { return MyNodeId() < usedNodes; } int Last() { return usedNodes - 1; } }; struct PipeShard { // lowR is the diameter of bottom hole - smallest of all // highR is the diameter of top hole. Largest. LL lowR, highR; void Get(int source) { highR = GetLL(source); lowR = GetLL(source); } void Put(int target) { PutLL(target, highR); PutLL(target, lowR); } }; struct ShardMapping { ShardMapping(int source) { Get(source); } ShardMapping(int b, int e, LL firstRealR, int pipeShard): b(b), e(e), firstRealR(firstRealR), pipeShard(pipeShard) {} int b, e; LL firstRealR; int pipeShard; void Put(int t) { PutInt(t, b); PutInt(t, e); PutLL(t, firstRealR); PutInt(t, pipeShard); } void Get(int s) { b = GetInt(s); e = GetInt(s); firstRealR = GetLL(s); pipeShard = GetInt(s); } bool operator<(const ShardMapping &s) const { return b < s.b; } }; struct KRASolver { Sharding krShard, piShard; vector<PipeShard> pipes; int master_nr; KRASolver(): krShard(NumberOfDiscs()), piShard(PipeHeight()), pipes(piShard.ShardCnt()), _nodeWorkLimit(-1) {} void solve() { // Set master to first node master_nr = 0; // WARNING: Master must be 0 at the start. if(piShard.ImUsed()) { int b, e; piShard.MyRange(b, e); LL first, minR; first = minR = HoleDiam(b); FOR(i, b+1, e-1) minR = min(HoleDiam(i), minR); PutLL(master_nr, first); PutLL(master_nr, minR); Send(master_nr); } // TODO: DEBUG STOPPER // if (MyNodeId() == 0) { // bool stop = true; // cout << "Find pid: " << getpid() << endl; // while(stop); // // } if (Master()) { REP(x, piShard.ShardCnt()) { int source = Receive(-1); pipes[source].Get(source); } // If someone has a smaller bottom hole above in the pipe, then // all pipe radiuses will be no bigger than this hole. Top hole has // index 0. LL minAbove = pipes[0].lowR; FOR(i, 1, piShard.Last()) { PipeShard &s = pipes[i]; s.highR = min(minAbove, s.highR); s.lowR = min(minAbove, s.lowR); minAbove = min(minAbove, s.lowR); } // Master does not send to himself // Master sends to 1 // 1 to 2 3 // 2 to 4 5 // 3 to 6 7 // etc if (NumberOfNodes() > 1) { SendPipes(1); } } if (NumberOfNodes() > 1 && !Master()) { int me = MyNodeId(), l = 2 * me, p = me * 2 + 1; int src = me / 2; Receive(src); REP(i, piShard.ShardCnt()) pipes[i].Get(src); if (l < NumberOfNodes()) SendPipes(l); if (p < NumberOfNodes()) SendPipes(p); } if (krShard.ImUsed()) { // Everyone computes max disc size and sends this to the root. int b, e; krShard.MyRange(b, e); LL maxR = DiscDiam(b); FOR(i, b+1, e-1) maxR = max(maxR, DiscDiam(i)); PutLL(master_nr, maxR); Send(master_nr); } if (Master()) { // Master computest the largest disc radius below each shard // and sends it back to the shard. // Disc nr 0 is the lowest, first falling, disc. vector<LL> maxDiscs(krShard.ShardCnt()); REP(x, krShard.ShardCnt()) { int src = Receive(-1); maxDiscs[src] = GetLL(src); } FOR(x, 1, krShard.Last()) maxDiscs[x] = max(maxDiscs[x], maxDiscs[x-1]); REP(nd, krShard.ShardCnt()) { LL m; if (nd == 0) m = -1; else m = maxDiscs[nd-1]; PutLL(nd, m); Send(nd); } } if (krShard.ImUsed()) { generateDiscPipeMapping(); // Here we will switch master to last node - least used one master_nr = NumberOfNodes()-1; PutInt(master_nr, (int)shMappings.size()); REP(x, SIZE(shMappings)) { shMappings[x].Put(master_nr); } Send(master_nr); } else { // Here we will switch master to last node - least used one master_nr = NumberOfNodes()-1; } int expectedAnswersToMaster = 0; if (Master()) { // Receive all mappings, combine them into jobs, send out jobs. shMappings.clear(); REP(x, krShard.ShardCnt()) { int source = Receive(-1); int len = GetInt(source); REP(y, len) shMappings.PB(ShardMapping(source)); } sort(ALL(shMappings)); #ifdef DBG_CHECKS if (shMappings[0].b != 0) cerr << "ERROR: shMappings[0].b != 0" << endl;; if (shMappings.back().e != NumberOfDiscs()) cerr << "ERROR: shMappings.back().e != NumberOfDiscs()" << endl; REP(x, SIZE(shMappings)-1) { if (shMappings[x].e != shMappings[x+1].b) { cerr << "ERROR: shMappings[x].e != shMappings[x+1].b" << endl; cerr << "Further entries ommited" << endl; break; } } #endif // First merge vector<ShardMapping> m; FOREACH(it, shMappings) { #ifdef DBG_CHECKS if (!m.empty() && m.back().pipeShard < it->pipeShard) cerr << "ERROR: !m.empty() && m.back().pipeShard < it->pipeShard" << endl; #endif if (m.empty() || m.back().pipeShard != it->pipeShard) m.PB(*it); else m.back().e = it->e; } shMappings = m; m.clear(); // Now split via size FOREACH(it, shMappings) { while((it->e - it->b) > nodeWorkLimit()) { int newE = it->b + nodeWorkLimit(); m.PB(*it); m.back().e = newE; it->b = newE; } if ((it->e - it->b) > 0) m.PB(*it); } // Send jobs to all available workers, round robin. vector<vector<ShardMapping> > jobs(NumberOfNodes()); int ndId = 0; FOREACH(it, m) { jobs[ndId].PB(*it); ndId = (ndId + 1) % NumberOfNodes(); } REP(trg, NumberOfNodes()) { PutInt(trg, SIZE(jobs[trg])); if (SIZE(jobs[trg]) > 0) { FOREACH(it, jobs[trg]) it->Put(trg); expectedAnswersToMaster += 1; } Send(trg); } } // Now each node calculates the slippage of discs on his slice of // pipe. This is guaranteed to be easy, beacause each disc in range // [b, e) stops in the given pipe (or above it, in case of the top // of the pipe). // Receive all jobs vector<ShardMapping> myJobs; Receive(master_nr); int jobCnt = GetInt(master_nr); REP(jobId, jobCnt) myJobs.PB(ShardMapping(master_nr)); // Receive from master int maxSlippage = -1; FOREACH(jobit, myJobs) { ShardMapping &m = *jobit; // I have some numbered discs and numbered pipes. // For each disc I must find the number of pipe at which it stops, // blocks and falls no further. // Then the slippage is the difference between the indices - reversed. // WARNING! Reverse order, beacause bottom of the pipe // has larger ids! We want to got bottom to top here. int piId, piBegin, piEnd; piShard.GetRange(m.pipeShard, piBegin, piEnd); vector<LL> piDiams(piEnd - piBegin); FOR(id, piBegin, piEnd-1) piDiams[id-piBegin] = HoleDiam(id); LL piDiam = pipes[m.pipeShard].highR; FOREACH(it, piDiams) piDiam = *it = min(*it, piDiam); piId = SIZE(piDiams)-1; int piHeight = PipeHeight(); int piNr = piHeight - piEnd; piDiam = piDiams[piId]; // cout <<"piNr initially:" <<piNr << endl; // cout <<"piBegin " << piBegin << " piEnd " << piEnd << endl; LL krDiam = m.firstRealR; FOR(krNr, m.b, m.e-1) { krDiam = max(krDiam, DiscDiam(krNr)); while (piId > 0 && krDiam > piDiam) { piId -= 1; piDiam = piDiams[piId]; piNr += 1; // cout <<"piNr goes to:" <<piNr << endl; } if (krDiam <= piDiam) { // Disc fits and this is the first spot it ever fit. if (piNr >= krNr) { maxSlippage = max(maxSlippage, piNr - krNr); #ifdef DBG_FULL cout << "Slippage " << (piNr - krNr) << " piNr " << piNr << " krNr " << krNr << ", on node " << MyNodeId() << endl; cout << "piDiam " << piDiam << " krDiam " << krDiam << endl; #endif } // This is not a real ERROR. If slippage is negative then we simply have a // disc whitch could fall lower but didn't because of other discs. // //#ifdef DBG_CHECKS // if (krNr > piNr) { // cerr << "ERROR: krNr > piNr (" << krNr << ' ' << piNr << ")" << endl; // cerr << "At node " << MyNodeId() << endl; // } //#endif } else { if (m.pipeShard == 0) { // So the disc is bigger than the top of pipie. maxSlippage = (int)1.5E9; // 1.5E9 } else { #ifdef DBG_CHECKS cerr << "ERROR: m.pipeShard != 0 && krDiam > piDiam, at node " << MyNodeId() << endl; #endif } } } } if (jobCnt) { PutInt(master_nr, maxSlippage); Send(master_nr); } if (Master()) { REP(x, expectedAnswersToMaster) { int src = Receive(-1); maxSlippage = max(maxSlippage, GetInt(src)); } int d = PipeHeight() - NumberOfDiscs() - maxSlippage + 1; if (maxSlippage == (int)1.5E9) d = 0; if (d < 0) d = 0; cout << d << endl; } } int _nodeWorkLimit; int nodeWorkLimit() { if (_nodeWorkLimit == -1) { _nodeWorkLimit = NumberOfDiscs() / NumberOfNodes(); _nodeWorkLimit = max(_nodeWorkLimit, 100); } return _nodeWorkLimit; } vector<ShardMapping> shMappings; void generateDiscPipeMapping() { // Disc shards receive max disc size below them (lower-indices) // and use this to max up all successive disc. Receive(master_nr); LL maxBelow = GetLL(master_nr); // Then for each disc they determine where it fits among the pipe // shards. Shards with lower numbers are wider. int b, e; krShard.MyRange(b, e); int piShr = piShard.Last(); // Stop krążka gwarantowany przez poz. FOR(i, b, e-1) { LL discR = maxBelow = max(DiscDiam(i), maxBelow); // Advance until it enters the pipe or we are at the top of pipe. while(piShr > 0 && pipes[piShr].highR < discR) { // Disc does not enter this pipe, yet this is not the top one. piShr -= 1; } // Either this is the top pipe, so disc will lie on top of it // or it can enter from the top, but not fall from bottom. // disc will block in shard piShr addToMappings(i, piShr, discR); } } void SendPipes(int trg) { REP(i, piShard.ShardCnt()) pipes[i].Put(trg); Send(trg); } void addToMappings(int i, int piShr, LL discR) { if (shMappings.empty()) { shMappings.PB(ShardMapping(i, i+1, discR, piShr)); } else { ShardMapping &m = shMappings.back(); if (m.pipeShard == piShr) { #ifdef DBG_CHECKS if (m.e != i) cerr << "ERROR: m.e != i" << endl; #endif m.e += 1; } else { shMappings.PB(ShardMapping(i, i+1, discR, piShr)); } } } long long int HoleDiam(long long int i) { return HoleDiameter(i+1); } long long int DiscDiam(long long int j) { return DiscDiameter(j+1); } bool Master() { return MyNodeId() == master_nr; } }; int main(int argc, char *argv[]) { #define deb(x) cout << #x << " = " << x << endl; // if (argc == 2 && strcmp(argv[1], "debug") == 0 ) { // // printf("== [RUNNING IN DEBUG MODE]==\n\n"); // char test_file_path[] = "/home/horban/workspace/Zadanka/in.txt"; // freopen(test_file_path, "r", stdin); // } // TODO: UWAGA NA TO PRZED WYSLANIEM // std::ios_base::sync_with_stdio(0); KRASolver sol; sol.solve(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 | #include <cstdio> #include <set> #include <iostream> #include <algorithm> #include <string> #include <vector> #include <string.h> #include <stdio.h> // TODO: Maybe comment this out before submit. //#define DBG_CHECKS //#define DBG_FULL #ifdef DBG_FULL #include <sys/types.h> #include <unistd.h> #endif // TODO: UWAGA NA TO PRZED WYSLANIEM #include "message.h" #include "krazki.h" #define deb(x) cout << #x << " = " << x << endl; using namespace std; // Dwa z najczesciej uzywanych typow o dlugich nazwach // - ich skrocenie jest bardzo istotne typedef vector<int> VI; typedef long long LL; // W programach bardzo rzadko mozna znalezc w pelni zapisana instrukcje petli. // Zamiast niej wykorzystywane sa trzy nastepujace makra: // FOR - petla zwiekszajaca zmienna x od b do e wlacznie #define FOR(x, b, e) for(int x = b; x <= (e); ++x) // FORD - petla zmniejszajaca zmienna x od b do e wlacznie #define FORD(x, b, e) for(int x = b; x >= (e); --x) // REP - petla zwiekszajaca zmienna x od 0 do n. Jest ona bardzo czesto // wykorzystywana do konstruowania i przegladania struktur danych #define REP(x, n) for(int x = 0; x < (n); ++x) // Makro VAR(v,n) deklaruje nowa zmienna o nazwie v oraz typie i wartosci // zmiennej n. Jest ono czesto wykorzystywane podczas operowania na // iteratorach struktur danych z biblioteki STL, ktorych nazwy typow sa bardzo dlugie #define VAR(v, n) __typeof(n) v = (n) // ALL(c) reprezentuje pare iteratorow wskazujacych odpowiednio na pierwszy // i za ostatni element w strukturach danych STL. Makro to jest bardzo // przydatne chociazby w przypadku korzystania z funkcji sort, ktora jako // parametry przyjmuje pare iteratorow reprezentujacych przedzial // elementow do posortowania #define ALL(c) (c).begin(), (c).end() // Ponizsze makro sluzy do wyznaczania rozmiaru struktur danych STL. // Uzywa sie go w programach, zamiast pisac po prostu x.size() ze wzgledu na to, // iz wyrazenie x.size() jest typu unsigned int i w przypadku porownywania // z typem int w procesie kompilacji generowane jest ostrzezenie #define SIZE(x) ((int)(x).size()) // Bardzo pozyteczne makro sluzace do iterowania po wszystkich elementach // w strukturach danych STL #define FOREACH(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i) // Skrot - zamiast pisac push_back podczas wstawiania elementow na koniec // struktury danych, takiej jak vector, wystarczy napisac PB #define PB push_back // Podobnie - zamiast first bedziemy pisali po prostu ST #define ST first // a zamiast second - ND #define ND second struct Sharding { int usedNodes; int d, n; Sharding(int n) { this->n = n; usedNodes = min(NumberOfNodes(), n); d = n / usedNodes; } int ShardCnt() { return usedNodes; } void GetRange(int nr, int &begin, int &end) { // if nr == 0, (0, k) // if nr == Last() (s, n) #ifdef DBG_CHECKS if (nr > usedNodes - 1) cerr << "ERROR: nr > usedNodes - 1" << endl; #endif begin = nr * d; end = (nr + 1) * d; if (nr == usedNodes - 1) end = n; } void MyRange(int &begin, int &end) { GetRange(MyNodeId(), begin, end); } bool ImUsed() { return MyNodeId() < usedNodes; } int Last() { return usedNodes - 1; } }; struct PipeShard { // lowR is the diameter of bottom hole - smallest of all // highR is the diameter of top hole. Largest. LL lowR, highR; void Get(int source) { highR = GetLL(source); lowR = GetLL(source); } void Put(int target) { PutLL(target, highR); PutLL(target, lowR); } }; struct ShardMapping { ShardMapping(int source) { Get(source); } ShardMapping(int b, int e, LL firstRealR, int pipeShard): b(b), e(e), firstRealR(firstRealR), pipeShard(pipeShard) {} int b, e; LL firstRealR; int pipeShard; void Put(int t) { PutInt(t, b); PutInt(t, e); PutLL(t, firstRealR); PutInt(t, pipeShard); } void Get(int s) { b = GetInt(s); e = GetInt(s); firstRealR = GetLL(s); pipeShard = GetInt(s); } bool operator<(const ShardMapping &s) const { return b < s.b; } }; struct KRASolver { Sharding krShard, piShard; vector<PipeShard> pipes; int master_nr; KRASolver(): krShard(NumberOfDiscs()), piShard(PipeHeight()), pipes(piShard.ShardCnt()), _nodeWorkLimit(-1) {} void solve() { // Set master to first node master_nr = 0; // WARNING: Master must be 0 at the start. if(piShard.ImUsed()) { int b, e; piShard.MyRange(b, e); LL first, minR; first = minR = HoleDiam(b); FOR(i, b+1, e-1) minR = min(HoleDiam(i), minR); PutLL(master_nr, first); PutLL(master_nr, minR); Send(master_nr); } // TODO: DEBUG STOPPER // if (MyNodeId() == 0) { // bool stop = true; // cout << "Find pid: " << getpid() << endl; // while(stop); // // } if (Master()) { REP(x, piShard.ShardCnt()) { int source = Receive(-1); pipes[source].Get(source); } // If someone has a smaller bottom hole above in the pipe, then // all pipe radiuses will be no bigger than this hole. Top hole has // index 0. LL minAbove = pipes[0].lowR; FOR(i, 1, piShard.Last()) { PipeShard &s = pipes[i]; s.highR = min(minAbove, s.highR); s.lowR = min(minAbove, s.lowR); minAbove = min(minAbove, s.lowR); } // Master does not send to himself // Master sends to 1 // 1 to 2 3 // 2 to 4 5 // 3 to 6 7 // etc if (NumberOfNodes() > 1) { SendPipes(1); } } if (NumberOfNodes() > 1 && !Master()) { int me = MyNodeId(), l = 2 * me, p = me * 2 + 1; int src = me / 2; Receive(src); REP(i, piShard.ShardCnt()) pipes[i].Get(src); if (l < NumberOfNodes()) SendPipes(l); if (p < NumberOfNodes()) SendPipes(p); } if (krShard.ImUsed()) { // Everyone computes max disc size and sends this to the root. int b, e; krShard.MyRange(b, e); LL maxR = DiscDiam(b); FOR(i, b+1, e-1) maxR = max(maxR, DiscDiam(i)); PutLL(master_nr, maxR); Send(master_nr); } if (Master()) { // Master computest the largest disc radius below each shard // and sends it back to the shard. // Disc nr 0 is the lowest, first falling, disc. vector<LL> maxDiscs(krShard.ShardCnt()); REP(x, krShard.ShardCnt()) { int src = Receive(-1); maxDiscs[src] = GetLL(src); } FOR(x, 1, krShard.Last()) maxDiscs[x] = max(maxDiscs[x], maxDiscs[x-1]); REP(nd, krShard.ShardCnt()) { LL m; if (nd == 0) m = -1; else m = maxDiscs[nd-1]; PutLL(nd, m); Send(nd); } } if (krShard.ImUsed()) { generateDiscPipeMapping(); // Here we will switch master to last node - least used one master_nr = NumberOfNodes()-1; PutInt(master_nr, (int)shMappings.size()); REP(x, SIZE(shMappings)) { shMappings[x].Put(master_nr); } Send(master_nr); } else { // Here we will switch master to last node - least used one master_nr = NumberOfNodes()-1; } int expectedAnswersToMaster = 0; if (Master()) { // Receive all mappings, combine them into jobs, send out jobs. shMappings.clear(); REP(x, krShard.ShardCnt()) { int source = Receive(-1); int len = GetInt(source); REP(y, len) shMappings.PB(ShardMapping(source)); } sort(ALL(shMappings)); #ifdef DBG_CHECKS if (shMappings[0].b != 0) cerr << "ERROR: shMappings[0].b != 0" << endl;; if (shMappings.back().e != NumberOfDiscs()) cerr << "ERROR: shMappings.back().e != NumberOfDiscs()" << endl; REP(x, SIZE(shMappings)-1) { if (shMappings[x].e != shMappings[x+1].b) { cerr << "ERROR: shMappings[x].e != shMappings[x+1].b" << endl; cerr << "Further entries ommited" << endl; break; } } #endif // First merge vector<ShardMapping> m; FOREACH(it, shMappings) { #ifdef DBG_CHECKS if (!m.empty() && m.back().pipeShard < it->pipeShard) cerr << "ERROR: !m.empty() && m.back().pipeShard < it->pipeShard" << endl; #endif if (m.empty() || m.back().pipeShard != it->pipeShard) m.PB(*it); else m.back().e = it->e; } shMappings = m; m.clear(); // Now split via size FOREACH(it, shMappings) { while((it->e - it->b) > nodeWorkLimit()) { int newE = it->b + nodeWorkLimit(); m.PB(*it); m.back().e = newE; it->b = newE; } if ((it->e - it->b) > 0) m.PB(*it); } // Send jobs to all available workers, round robin. vector<vector<ShardMapping> > jobs(NumberOfNodes()); int ndId = 0; FOREACH(it, m) { jobs[ndId].PB(*it); ndId = (ndId + 1) % NumberOfNodes(); } REP(trg, NumberOfNodes()) { PutInt(trg, SIZE(jobs[trg])); if (SIZE(jobs[trg]) > 0) { FOREACH(it, jobs[trg]) it->Put(trg); expectedAnswersToMaster += 1; } Send(trg); } } // Now each node calculates the slippage of discs on his slice of // pipe. This is guaranteed to be easy, beacause each disc in range // [b, e) stops in the given pipe (or above it, in case of the top // of the pipe). // Receive all jobs vector<ShardMapping> myJobs; Receive(master_nr); int jobCnt = GetInt(master_nr); REP(jobId, jobCnt) myJobs.PB(ShardMapping(master_nr)); // Receive from master int maxSlippage = -1; FOREACH(jobit, myJobs) { ShardMapping &m = *jobit; // I have some numbered discs and numbered pipes. // For each disc I must find the number of pipe at which it stops, // blocks and falls no further. // Then the slippage is the difference between the indices - reversed. // WARNING! Reverse order, beacause bottom of the pipe // has larger ids! We want to got bottom to top here. int piId, piBegin, piEnd; piShard.GetRange(m.pipeShard, piBegin, piEnd); vector<LL> piDiams(piEnd - piBegin); FOR(id, piBegin, piEnd-1) piDiams[id-piBegin] = HoleDiam(id); LL piDiam = pipes[m.pipeShard].highR; FOREACH(it, piDiams) piDiam = *it = min(*it, piDiam); piId = SIZE(piDiams)-1; int piHeight = PipeHeight(); int piNr = piHeight - piEnd; piDiam = piDiams[piId]; // cout <<"piNr initially:" <<piNr << endl; // cout <<"piBegin " << piBegin << " piEnd " << piEnd << endl; LL krDiam = m.firstRealR; FOR(krNr, m.b, m.e-1) { krDiam = max(krDiam, DiscDiam(krNr)); while (piId > 0 && krDiam > piDiam) { piId -= 1; piDiam = piDiams[piId]; piNr += 1; // cout <<"piNr goes to:" <<piNr << endl; } if (krDiam <= piDiam) { // Disc fits and this is the first spot it ever fit. if (piNr >= krNr) { maxSlippage = max(maxSlippage, piNr - krNr); #ifdef DBG_FULL cout << "Slippage " << (piNr - krNr) << " piNr " << piNr << " krNr " << krNr << ", on node " << MyNodeId() << endl; cout << "piDiam " << piDiam << " krDiam " << krDiam << endl; #endif } // This is not a real ERROR. If slippage is negative then we simply have a // disc whitch could fall lower but didn't because of other discs. // //#ifdef DBG_CHECKS // if (krNr > piNr) { // cerr << "ERROR: krNr > piNr (" << krNr << ' ' << piNr << ")" << endl; // cerr << "At node " << MyNodeId() << endl; // } //#endif } else { if (m.pipeShard == 0) { // So the disc is bigger than the top of pipie. maxSlippage = (int)1.5E9; // 1.5E9 } else { #ifdef DBG_CHECKS cerr << "ERROR: m.pipeShard != 0 && krDiam > piDiam, at node " << MyNodeId() << endl; #endif } } } } if (jobCnt) { PutInt(master_nr, maxSlippage); Send(master_nr); } if (Master()) { REP(x, expectedAnswersToMaster) { int src = Receive(-1); maxSlippage = max(maxSlippage, GetInt(src)); } int d = PipeHeight() - NumberOfDiscs() - maxSlippage + 1; if (maxSlippage == (int)1.5E9) d = 0; if (d < 0) d = 0; cout << d << endl; } } int _nodeWorkLimit; int nodeWorkLimit() { if (_nodeWorkLimit == -1) { _nodeWorkLimit = NumberOfDiscs() / NumberOfNodes(); _nodeWorkLimit = max(_nodeWorkLimit, 100); } return _nodeWorkLimit; } vector<ShardMapping> shMappings; void generateDiscPipeMapping() { // Disc shards receive max disc size below them (lower-indices) // and use this to max up all successive disc. Receive(master_nr); LL maxBelow = GetLL(master_nr); // Then for each disc they determine where it fits among the pipe // shards. Shards with lower numbers are wider. int b, e; krShard.MyRange(b, e); int piShr = piShard.Last(); // Stop krążka gwarantowany przez poz. FOR(i, b, e-1) { LL discR = maxBelow = max(DiscDiam(i), maxBelow); // Advance until it enters the pipe or we are at the top of pipe. while(piShr > 0 && pipes[piShr].highR < discR) { // Disc does not enter this pipe, yet this is not the top one. piShr -= 1; } // Either this is the top pipe, so disc will lie on top of it // or it can enter from the top, but not fall from bottom. // disc will block in shard piShr addToMappings(i, piShr, discR); } } void SendPipes(int trg) { REP(i, piShard.ShardCnt()) pipes[i].Put(trg); Send(trg); } void addToMappings(int i, int piShr, LL discR) { if (shMappings.empty()) { shMappings.PB(ShardMapping(i, i+1, discR, piShr)); } else { ShardMapping &m = shMappings.back(); if (m.pipeShard == piShr) { #ifdef DBG_CHECKS if (m.e != i) cerr << "ERROR: m.e != i" << endl; #endif m.e += 1; } else { shMappings.PB(ShardMapping(i, i+1, discR, piShr)); } } } long long int HoleDiam(long long int i) { return HoleDiameter(i+1); } long long int DiscDiam(long long int j) { return DiscDiameter(j+1); } bool Master() { return MyNodeId() == master_nr; } }; int main(int argc, char *argv[]) { #define deb(x) cout << #x << " = " << x << endl; // if (argc == 2 && strcmp(argv[1], "debug") == 0 ) { // // printf("== [RUNNING IN DEBUG MODE]==\n\n"); // char test_file_path[] = "/home/horban/workspace/Zadanka/in.txt"; // freopen(test_file_path, "r", stdin); // } // TODO: UWAGA NA TO PRZED WYSLANIEM // std::ios_base::sync_with_stdio(0); KRASolver sol; sol.solve(); return 0; } |