#include "message.h" #include "krazki.h" #include <climits> #include <cstdio> #include <cstdlib> #include <string> #include <vector> #include <algorithm> #include <map> using namespace std; int main() { int n = PipeHeight(); int m = NumberOfDiscs(); // Handle the obvious case of m>n. if (m > n) { if (MyNodeId() == 0) { printf("0\n"); } return 0; } // If n is small (smaller than the number of computing instances), just // calculate the result locally in task 0. if (n < NumberOfNodes() - 1) { if (MyNodeId() == 0) { long long *r = new long long[n]; long long *k = new long long[m]; long long *mm = new long long[n]; for (int i = 0; i < n; i++) { r[i] = HoleDiameter(i + 1); if (i == 0) { mm[i] = r[i]; } else { mm[i] = min(mm[i - 1], r[i]); } } for (int i = 0; i < m; i++) { k[i] = DiscDiameter(i + 1); } int it = n - 1; for (int i = 0; i < m; i++) { while (it >= 0 && mm[it] < k[i]) { it--; } if (it < 0) { printf("0\n"); break; } //printf("Putting disc %d on pos %d.\n", i + 1, it + 1); mm[it] = 0; } printf("%d\n", it + 1); delete[] r; delete[] k; delete[] mm; } return 0; } // Here follows the actual logic of the distribution solution. if (MyNodeId() == 0) /* Master task logic. */ { // Load all local diameter minimals from the tasks. int tasks_done = 0; vector<long long> r_mins(NumberOfNodes()); r_mins[0] = LLONG_MAX; while (tasks_done < NumberOfNodes() - 1) { int source = Receive(-1); long long r_min = GetLL(source); r_mins[source] = r_min; //printf("[MASTER] r_min for task %d: %lld\n", source, r_min); tasks_done++; } // Create a list of partial minimal diameters and send it to the tasks. vector<long long> r_min_partials(NumberOfNodes()); r_min_partials[0] = LLONG_MAX; for (int i = 1; i < NumberOfNodes(); i++) { r_min_partials[i] = min(r_min_partials[i - 1], r_mins[i]); //printf("[MASTER] Min partial %d. %lld\n", i, r_min_partials[i]); } for (int i = 1; i < NumberOfNodes(); i++) { for (int j = 0; j < r_min_partials.size(); j++) { PutLL(i, r_min_partials[j]); } Send(i); } // Load all disk diameter maxes from the tasks. int k_workers = min(m, NumberOfNodes() - 1); vector<long long> k_maxes(k_workers + 1); k_maxes[0] = 0; tasks_done = 0; while (tasks_done < k_workers) { int source = Receive(-1); int k_max = GetLL(source); k_maxes[source] = k_max; tasks_done++; } // Create a list of partial maximum diameters and send it to the tasks. vector<long long> k_max_partials(k_workers + 1); k_max_partials[0] = 0; for (int i = 1; i <= k_workers; i++) { k_max_partials[i] = max(k_max_partials[i - 1], k_maxes[i]); } for (int i = 1; i <= k_workers; i++) { PutLL(i, k_max_partials[i - 1]); Send(i); } // Receive the index of the first recomputed max from each task. vector<int> first_max_offsets(k_workers + 1); tasks_done = 0; while (tasks_done < k_workers) { int source = Receive(-1); int offset = GetInt(source); first_max_offsets[source] = offset; //printf("[MASTER] Received %d as first max offset from %d.\n", offset, source); tasks_done++; } // Iterate from the back and send the index of the next max to each task. int next_max_offset = -1; for (int i = k_workers; i > 0; i--) { PutInt(i, next_max_offset); Send(i); if (first_max_offsets[i] != -1) { next_max_offset = first_max_offsets[i]; } } // Read and combine the results of final worker assignments. map<int, pair<int, int> > per_worker_minmax; tasks_done = 0; while (tasks_done < k_workers) { int source = Receive(-1); int entries = GetInt(source); while (entries--) { int worker = GetInt(source); int min_value = GetInt(source); int max_value = GetInt(source); if (per_worker_minmax.find(worker) == per_worker_minmax.end()) { per_worker_minmax[worker] = make_pair(min_value, max_value); } else { per_worker_minmax[worker].first = min(per_worker_minmax[worker].first, min_value); per_worker_minmax[worker].second = max(per_worker_minmax[worker].second, max_value); } } tasks_done++; } /*printf("[MASTER] ===================================\n"); for (auto minmax : per_worker_minmax) { printf("[MASTER] %d ---> (%d, %d)\n", minmax.first, minmax.second.first, minmax.second.second); }*/ // Send the work assignments to tasks. for (int i = 1; i < NumberOfNodes(); i++) { if (per_worker_minmax.find(i) != per_worker_minmax.end()) { PutInt(i, per_worker_minmax[i].first); PutInt(i, per_worker_minmax[i].second); } else { PutInt(i, -1); PutInt(i, -1); } Send(i); } // Receive all results. vector<pair<int, int> > results(NumberOfNodes()); tasks_done = 0; while (tasks_done < NumberOfNodes() - 1) { int source = Receive(-1); int free_space = GetInt(source); int extra = GetInt(source); //printf("[MASTER] Got free space: %d, extra: %d from %d.\n", free_space, extra, source); results[source] = make_pair(free_space, extra); tasks_done++; } int sum = 0; for (int i = NumberOfNodes() - 1; i > 0; i--) { //printf("[MASTER] i: %d, sum: %d\n", i, sum); if (results[i].second != 0) { if (sum < 0) { sum = 0; } sum += results[i].second; } if (i != 1) { sum += results[i - 1].first; } } if (sum > 0) { printf("0\n"); } else { printf("%d\n", -sum + 1); } } else /* Worker task logic. */ { // Calculate the N ranges per each task. int start = 1 + (n * (MyNodeId() - 1)) / (NumberOfNodes() - 1); int end; if (MyNodeId() != NumberOfNodes() - 1) { end = ((n * MyNodeId()) / (NumberOfNodes() - 1)); } else { end = n; } //printf("[%d] start: %d, end: %d\n", MyNodeId(), start, end); // Load the corresponding diameters. vector<long long> r; for (int i = start; i <= end; i++) { r.push_back(HoleDiameter(i)); } // Calculate local minimals. vector<long long> r_mins; long long cur_min = LLONG_MAX; for (int i = 0; i < r.size(); i++) { if (r[i] < cur_min) { r_mins.push_back(i); cur_min = r[i]; } } // Send the local minimum to the master. PutLL(0, cur_min); Send(0); // Receive the partial mins from the master. vector<long long> r_min_partials(NumberOfNodes() + 1); r_min_partials[NumberOfNodes()] = 0; Receive(0); for (int i = 0; i < NumberOfNodes(); i++) { r_min_partials[i] = GetLL(0); } long long partial_min = r_min_partials[MyNodeId() - 1]; /*printf("--------------------------------"); printf("[%d] Received partial min: %lld\n", MyNodeId(), partial_min); printf("[%d] Number of mins before: %lu\n", MyNodeId(), r_mins.size());*/ // Remove insignificant mins. auto r_mins_it = r_mins.begin(); while (r_mins_it != r_mins.end() && partial_min <= r[*r_mins_it]) { r_mins_it++; } r_mins.erase(r_mins.begin(), r_mins_it); //printf("[%d] Number of mins after: %lu\n", MyNodeId(), r_mins.size()); /*for (int i = 0; i < r_mins.size(); i++) { printf("[%d] %d. %lld\n", MyNodeId(), i + 1, r[r_mins[i]]); }*/ // Calculate the M ranges per each task. int k_start, k_end; if (m < NumberOfNodes() - 1) { if (MyNodeId() <= m) { k_start = MyNodeId(); k_end = MyNodeId(); } else { k_start = k_end = -1; } } else { k_start = 1 + (m * (MyNodeId() - 1)) / (NumberOfNodes() - 1); if (MyNodeId() != NumberOfNodes() - 1) { k_end = ((m * MyNodeId()) / (NumberOfNodes() - 1)); } else { k_end = m; } } //printf("[%d] k_start: %d, k_end: %d\n", MyNodeId(), k_start, k_end); // Load the corresponding diameters. if (k_start != -1 && k_end != -1) { //printf("--------------------------------"); vector<long long> k; for (int i = k_start; i <= k_end; i++) { k.push_back(DiscDiameter(i)); } // Calculate local maxes. vector<int> k_maxes; long long cur_max = 0; for (int i = 0; i < k.size(); i++) { if (k[i] > cur_max) { k_maxes.push_back(i); cur_max = k[i]; } } // Send the local max to the master. PutLL(0, cur_max); Send(0); // Get the partial max back for recalculation. Receive(0); long long k_partial_max = GetLL(0); /*printf("[%d] Received partial max: %lld\n", MyNodeId(), k_partial_max); printf("[%d] Number of maxes before: %lu\n", MyNodeId(), k_maxes.size());*/ // Remove insignificant maxes. auto k_maxes_it = k_maxes.begin(); while (k_maxes_it != k_maxes.end() && k_partial_max >= k[*k_maxes_it]) { k_maxes_it++; } k_maxes.erase(k_maxes.begin(), k_maxes_it); /*printf("[%d] Number of maxes after: %lu\n", MyNodeId(), k_maxes.size()); for (int i = 0; i < k_maxes.size(); i++) { printf("[%d] %d. %d\n", MyNodeId(), i + 1, k[k_maxes[i]]); }*/ // Send the index of the first local max to the master, or -1, if there // are none. if (!k_maxes.empty()) { PutInt(0, k_start + k_maxes[0]); } else { PutInt(0, -1); } Send(0); // Receive the index of the next offset (handled by a subsequent worker). Receive(0); int next_max_offset = GetInt(0); //printf("[%d] Next max offset: %d\n", MyNodeId(), next_max_offset); // Handle our local maxes, if we have any. //printf("-------------------------------------------\n"); if (!k_maxes.empty()) { // Create a list of <max offset, sequence length, worker>. map<int, pair<int, int> > per_worker_minmax; int worker_it = NumberOfNodes(); for (int i = 0; i < k_maxes.size(); i++) { int max_start, max_length, max_worker; if (i != k_maxes.size() - 1) { max_start = k_start + k_maxes[i]; max_length = k_maxes[i + 1] - k_maxes[i]; } else { if (next_max_offset != -1) { max_start = k_start + k_maxes[i]; max_length = next_max_offset - (k_start + k_maxes[i]); } else { max_start = k_start + k_maxes[i]; max_length = (m + 1) - (k_start + k_maxes[i]); } } while (r_min_partials[worker_it - 1] < k[k_maxes[i]]) { worker_it--; } if (worker_it == NumberOfNodes()) { max_worker = worker_it - 1; } else { max_worker = worker_it; } if (per_worker_minmax.find(max_worker) == per_worker_minmax.end()) { per_worker_minmax[max_worker] = make_pair(max_start, max_start + max_length); } else { per_worker_minmax[max_worker].first = min(per_worker_minmax[max_worker].first, max_start); per_worker_minmax[max_worker].second = max(per_worker_minmax[max_worker].second, max_start + max_length); } /*printf("[%d] Local maxes += (%d, %d, %d)\n", MyNodeId(), max_start, max_length, max_worker);*/ } /*printf("[%d] Mins and maxes for workers:\n", MyNodeId()); for (auto it : per_worker_minmax) { printf("[%d] Worker: %d, min: %d, max: %d\n", MyNodeId(), it.first, it.second.first, it.second.second); }*/ // Send a summary of worker assignments to the master for recalculation. PutInt(0, per_worker_minmax.size()); for (auto it : per_worker_minmax) { PutInt(0, it.first); PutInt(0, it.second.first); PutInt(0, it.second.second); } Send(0); } else { // If there are no maxes, nothing to send. PutInt(0, 0); Send(0); } } // Receive instructions about work from master. Receive(0); int disc_min = GetInt(0); int disc_max = GetInt(0); if (disc_min == -1 && disc_max == -1) { PutInt(0, -((end + 1) - start)); // Lots of free space at the beginning. PutInt(0, 0); // No data sticks out. Send(0); } else { // Prepare the regular partial minimum array. vector<long long> mm(end - start + 1); for (int i = start; i <= end; i++) { if (i == start) { mm[i - start] = r[i - start]; } else { mm[i - start] = min(mm[i - start - 1], r[i - start]); } } long long disc_val = DiscDiameter(disc_min); int pos; if (r_mins.empty() || r[r_mins.back()] >= disc_val) { pos = end - start; } else { pos = r_mins.back() - 1; } //printf("[%d] Starting pos: %d (%lld)\n", MyNodeId(), pos, r[pos]); int disc; int free_space = end - start + 1; for (disc = disc_min; disc < disc_max; disc++) { while (pos >= 0 && mm[pos] < DiscDiameter(disc)) { pos--; } if (pos < 0) { break; } if (disc == disc_min) { free_space = end - (pos + start); } //printf("Putting disc %d on pos %d.\n", disc, start + pos); mm[pos] = 0; } int remaining; if (disc == disc_max) { remaining = -pos; } else { remaining = disc_max - disc; } //printf("[%d] Free space: %d, extra: %d (%d - %d)\n", MyNodeId(), free_space, disc_max - disc, disc_max, disc); PutInt(0, -free_space); PutInt(0, remaining); Send(0); } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 | #include "message.h" #include "krazki.h" #include <climits> #include <cstdio> #include <cstdlib> #include <string> #include <vector> #include <algorithm> #include <map> using namespace std; int main() { int n = PipeHeight(); int m = NumberOfDiscs(); // Handle the obvious case of m>n. if (m > n) { if (MyNodeId() == 0) { printf("0\n"); } return 0; } // If n is small (smaller than the number of computing instances), just // calculate the result locally in task 0. if (n < NumberOfNodes() - 1) { if (MyNodeId() == 0) { long long *r = new long long[n]; long long *k = new long long[m]; long long *mm = new long long[n]; for (int i = 0; i < n; i++) { r[i] = HoleDiameter(i + 1); if (i == 0) { mm[i] = r[i]; } else { mm[i] = min(mm[i - 1], r[i]); } } for (int i = 0; i < m; i++) { k[i] = DiscDiameter(i + 1); } int it = n - 1; for (int i = 0; i < m; i++) { while (it >= 0 && mm[it] < k[i]) { it--; } if (it < 0) { printf("0\n"); break; } //printf("Putting disc %d on pos %d.\n", i + 1, it + 1); mm[it] = 0; } printf("%d\n", it + 1); delete[] r; delete[] k; delete[] mm; } return 0; } // Here follows the actual logic of the distribution solution. if (MyNodeId() == 0) /* Master task logic. */ { // Load all local diameter minimals from the tasks. int tasks_done = 0; vector<long long> r_mins(NumberOfNodes()); r_mins[0] = LLONG_MAX; while (tasks_done < NumberOfNodes() - 1) { int source = Receive(-1); long long r_min = GetLL(source); r_mins[source] = r_min; //printf("[MASTER] r_min for task %d: %lld\n", source, r_min); tasks_done++; } // Create a list of partial minimal diameters and send it to the tasks. vector<long long> r_min_partials(NumberOfNodes()); r_min_partials[0] = LLONG_MAX; for (int i = 1; i < NumberOfNodes(); i++) { r_min_partials[i] = min(r_min_partials[i - 1], r_mins[i]); //printf("[MASTER] Min partial %d. %lld\n", i, r_min_partials[i]); } for (int i = 1; i < NumberOfNodes(); i++) { for (int j = 0; j < r_min_partials.size(); j++) { PutLL(i, r_min_partials[j]); } Send(i); } // Load all disk diameter maxes from the tasks. int k_workers = min(m, NumberOfNodes() - 1); vector<long long> k_maxes(k_workers + 1); k_maxes[0] = 0; tasks_done = 0; while (tasks_done < k_workers) { int source = Receive(-1); int k_max = GetLL(source); k_maxes[source] = k_max; tasks_done++; } // Create a list of partial maximum diameters and send it to the tasks. vector<long long> k_max_partials(k_workers + 1); k_max_partials[0] = 0; for (int i = 1; i <= k_workers; i++) { k_max_partials[i] = max(k_max_partials[i - 1], k_maxes[i]); } for (int i = 1; i <= k_workers; i++) { PutLL(i, k_max_partials[i - 1]); Send(i); } // Receive the index of the first recomputed max from each task. vector<int> first_max_offsets(k_workers + 1); tasks_done = 0; while (tasks_done < k_workers) { int source = Receive(-1); int offset = GetInt(source); first_max_offsets[source] = offset; //printf("[MASTER] Received %d as first max offset from %d.\n", offset, source); tasks_done++; } // Iterate from the back and send the index of the next max to each task. int next_max_offset = -1; for (int i = k_workers; i > 0; i--) { PutInt(i, next_max_offset); Send(i); if (first_max_offsets[i] != -1) { next_max_offset = first_max_offsets[i]; } } // Read and combine the results of final worker assignments. map<int, pair<int, int> > per_worker_minmax; tasks_done = 0; while (tasks_done < k_workers) { int source = Receive(-1); int entries = GetInt(source); while (entries--) { int worker = GetInt(source); int min_value = GetInt(source); int max_value = GetInt(source); if (per_worker_minmax.find(worker) == per_worker_minmax.end()) { per_worker_minmax[worker] = make_pair(min_value, max_value); } else { per_worker_minmax[worker].first = min(per_worker_minmax[worker].first, min_value); per_worker_minmax[worker].second = max(per_worker_minmax[worker].second, max_value); } } tasks_done++; } /*printf("[MASTER] ===================================\n"); for (auto minmax : per_worker_minmax) { printf("[MASTER] %d ---> (%d, %d)\n", minmax.first, minmax.second.first, minmax.second.second); }*/ // Send the work assignments to tasks. for (int i = 1; i < NumberOfNodes(); i++) { if (per_worker_minmax.find(i) != per_worker_minmax.end()) { PutInt(i, per_worker_minmax[i].first); PutInt(i, per_worker_minmax[i].second); } else { PutInt(i, -1); PutInt(i, -1); } Send(i); } // Receive all results. vector<pair<int, int> > results(NumberOfNodes()); tasks_done = 0; while (tasks_done < NumberOfNodes() - 1) { int source = Receive(-1); int free_space = GetInt(source); int extra = GetInt(source); //printf("[MASTER] Got free space: %d, extra: %d from %d.\n", free_space, extra, source); results[source] = make_pair(free_space, extra); tasks_done++; } int sum = 0; for (int i = NumberOfNodes() - 1; i > 0; i--) { //printf("[MASTER] i: %d, sum: %d\n", i, sum); if (results[i].second != 0) { if (sum < 0) { sum = 0; } sum += results[i].second; } if (i != 1) { sum += results[i - 1].first; } } if (sum > 0) { printf("0\n"); } else { printf("%d\n", -sum + 1); } } else /* Worker task logic. */ { // Calculate the N ranges per each task. int start = 1 + (n * (MyNodeId() - 1)) / (NumberOfNodes() - 1); int end; if (MyNodeId() != NumberOfNodes() - 1) { end = ((n * MyNodeId()) / (NumberOfNodes() - 1)); } else { end = n; } //printf("[%d] start: %d, end: %d\n", MyNodeId(), start, end); // Load the corresponding diameters. vector<long long> r; for (int i = start; i <= end; i++) { r.push_back(HoleDiameter(i)); } // Calculate local minimals. vector<long long> r_mins; long long cur_min = LLONG_MAX; for (int i = 0; i < r.size(); i++) { if (r[i] < cur_min) { r_mins.push_back(i); cur_min = r[i]; } } // Send the local minimum to the master. PutLL(0, cur_min); Send(0); // Receive the partial mins from the master. vector<long long> r_min_partials(NumberOfNodes() + 1); r_min_partials[NumberOfNodes()] = 0; Receive(0); for (int i = 0; i < NumberOfNodes(); i++) { r_min_partials[i] = GetLL(0); } long long partial_min = r_min_partials[MyNodeId() - 1]; /*printf("--------------------------------"); printf("[%d] Received partial min: %lld\n", MyNodeId(), partial_min); printf("[%d] Number of mins before: %lu\n", MyNodeId(), r_mins.size());*/ // Remove insignificant mins. auto r_mins_it = r_mins.begin(); while (r_mins_it != r_mins.end() && partial_min <= r[*r_mins_it]) { r_mins_it++; } r_mins.erase(r_mins.begin(), r_mins_it); //printf("[%d] Number of mins after: %lu\n", MyNodeId(), r_mins.size()); /*for (int i = 0; i < r_mins.size(); i++) { printf("[%d] %d. %lld\n", MyNodeId(), i + 1, r[r_mins[i]]); }*/ // Calculate the M ranges per each task. int k_start, k_end; if (m < NumberOfNodes() - 1) { if (MyNodeId() <= m) { k_start = MyNodeId(); k_end = MyNodeId(); } else { k_start = k_end = -1; } } else { k_start = 1 + (m * (MyNodeId() - 1)) / (NumberOfNodes() - 1); if (MyNodeId() != NumberOfNodes() - 1) { k_end = ((m * MyNodeId()) / (NumberOfNodes() - 1)); } else { k_end = m; } } //printf("[%d] k_start: %d, k_end: %d\n", MyNodeId(), k_start, k_end); // Load the corresponding diameters. if (k_start != -1 && k_end != -1) { //printf("--------------------------------"); vector<long long> k; for (int i = k_start; i <= k_end; i++) { k.push_back(DiscDiameter(i)); } // Calculate local maxes. vector<int> k_maxes; long long cur_max = 0; for (int i = 0; i < k.size(); i++) { if (k[i] > cur_max) { k_maxes.push_back(i); cur_max = k[i]; } } // Send the local max to the master. PutLL(0, cur_max); Send(0); // Get the partial max back for recalculation. Receive(0); long long k_partial_max = GetLL(0); /*printf("[%d] Received partial max: %lld\n", MyNodeId(), k_partial_max); printf("[%d] Number of maxes before: %lu\n", MyNodeId(), k_maxes.size());*/ // Remove insignificant maxes. auto k_maxes_it = k_maxes.begin(); while (k_maxes_it != k_maxes.end() && k_partial_max >= k[*k_maxes_it]) { k_maxes_it++; } k_maxes.erase(k_maxes.begin(), k_maxes_it); /*printf("[%d] Number of maxes after: %lu\n", MyNodeId(), k_maxes.size()); for (int i = 0; i < k_maxes.size(); i++) { printf("[%d] %d. %d\n", MyNodeId(), i + 1, k[k_maxes[i]]); }*/ // Send the index of the first local max to the master, or -1, if there // are none. if (!k_maxes.empty()) { PutInt(0, k_start + k_maxes[0]); } else { PutInt(0, -1); } Send(0); // Receive the index of the next offset (handled by a subsequent worker). Receive(0); int next_max_offset = GetInt(0); //printf("[%d] Next max offset: %d\n", MyNodeId(), next_max_offset); // Handle our local maxes, if we have any. //printf("-------------------------------------------\n"); if (!k_maxes.empty()) { // Create a list of <max offset, sequence length, worker>. map<int, pair<int, int> > per_worker_minmax; int worker_it = NumberOfNodes(); for (int i = 0; i < k_maxes.size(); i++) { int max_start, max_length, max_worker; if (i != k_maxes.size() - 1) { max_start = k_start + k_maxes[i]; max_length = k_maxes[i + 1] - k_maxes[i]; } else { if (next_max_offset != -1) { max_start = k_start + k_maxes[i]; max_length = next_max_offset - (k_start + k_maxes[i]); } else { max_start = k_start + k_maxes[i]; max_length = (m + 1) - (k_start + k_maxes[i]); } } while (r_min_partials[worker_it - 1] < k[k_maxes[i]]) { worker_it--; } if (worker_it == NumberOfNodes()) { max_worker = worker_it - 1; } else { max_worker = worker_it; } if (per_worker_minmax.find(max_worker) == per_worker_minmax.end()) { per_worker_minmax[max_worker] = make_pair(max_start, max_start + max_length); } else { per_worker_minmax[max_worker].first = min(per_worker_minmax[max_worker].first, max_start); per_worker_minmax[max_worker].second = max(per_worker_minmax[max_worker].second, max_start + max_length); } /*printf("[%d] Local maxes += (%d, %d, %d)\n", MyNodeId(), max_start, max_length, max_worker);*/ } /*printf("[%d] Mins and maxes for workers:\n", MyNodeId()); for (auto it : per_worker_minmax) { printf("[%d] Worker: %d, min: %d, max: %d\n", MyNodeId(), it.first, it.second.first, it.second.second); }*/ // Send a summary of worker assignments to the master for recalculation. PutInt(0, per_worker_minmax.size()); for (auto it : per_worker_minmax) { PutInt(0, it.first); PutInt(0, it.second.first); PutInt(0, it.second.second); } Send(0); } else { // If there are no maxes, nothing to send. PutInt(0, 0); Send(0); } } // Receive instructions about work from master. Receive(0); int disc_min = GetInt(0); int disc_max = GetInt(0); if (disc_min == -1 && disc_max == -1) { PutInt(0, -((end + 1) - start)); // Lots of free space at the beginning. PutInt(0, 0); // No data sticks out. Send(0); } else { // Prepare the regular partial minimum array. vector<long long> mm(end - start + 1); for (int i = start; i <= end; i++) { if (i == start) { mm[i - start] = r[i - start]; } else { mm[i - start] = min(mm[i - start - 1], r[i - start]); } } long long disc_val = DiscDiameter(disc_min); int pos; if (r_mins.empty() || r[r_mins.back()] >= disc_val) { pos = end - start; } else { pos = r_mins.back() - 1; } //printf("[%d] Starting pos: %d (%lld)\n", MyNodeId(), pos, r[pos]); int disc; int free_space = end - start + 1; for (disc = disc_min; disc < disc_max; disc++) { while (pos >= 0 && mm[pos] < DiscDiameter(disc)) { pos--; } if (pos < 0) { break; } if (disc == disc_min) { free_space = end - (pos + start); } //printf("Putting disc %d on pos %d.\n", disc, start + pos); mm[pos] = 0; } int remaining; if (disc == disc_max) { remaining = -pos; } else { remaining = disc_max - disc; } //printf("[%d] Free space: %d, extra: %d (%d - %d)\n", MyNodeId(), free_space, disc_max - disc, disc_max, disc); PutInt(0, -free_space); PutInt(0, remaining); Send(0); } } return 0; } |