#include <iostream> #include <cmath> #include <limits> #include <vector> #include <list> #include <cstdint> #include <unistd.h> #include "message.h" #include "krazki.h" //#define DODEB #ifdef DODEB #define DEBUG(A) std::cerr << A; #define DEBUGNL(A) std::cerr << A << std::endl; #define SLEEP(A) sleep(A); #else #define DEBUG(A) #define DEBUGNL(A) #define SLEEP(A) #endif //////////////////////////////////////////////////////////////////////////////// // A class for assigning jobs to nodes class scheduler_t { protected: // Minimum reasonable number of indices per node int min_jobs_per_node; long long num_jobs; int num_used_nodes; long long jobs_per_node; public: scheduler_t(long long num_jobs, int num_nodes, int min_jobs_per_node); int get_num_used_nodes() const; bool is_node_used(int node_id) const; std::pair<long long, long long> get_jobs_for_node(int node_id) const; }; scheduler_t::scheduler_t(long long num_jobs, int num_nodes, int min_jobs_per_node) : min_jobs_per_node(std::max(1, min_jobs_per_node)), num_jobs(num_jobs) { if(num_jobs < min_jobs_per_node) { num_used_nodes = 1; jobs_per_node = num_jobs; } else { // At most as many nodes as jobs num_used_nodes = std::min(num_jobs, static_cast<long long>(num_nodes)); // As a result jobs_per_node here is at least 1 jobs_per_node = num_jobs / num_used_nodes; // If the number of jobs per node is smaller than the limit if(jobs_per_node < min_jobs_per_node) { num_used_nodes = num_jobs / min_jobs_per_node; jobs_per_node = num_jobs / num_used_nodes; } } } int scheduler_t::get_num_used_nodes() const { return num_used_nodes; } bool scheduler_t::is_node_used(int node_id) const { return node_id < num_used_nodes; } std::pair<long long, long long> scheduler_t::get_jobs_for_node(int node_id) const { // Unused node if (node_id >= num_used_nodes) { return std::make_pair(-1, -1); } // For the used nodes // Distribute the reminder of jobs equaly long long rem = num_jobs - jobs_per_node * num_used_nodes; long long first; long long last; if (node_id < rem) { first = (jobs_per_node + 1) * node_id; last = first + jobs_per_node; } else { first = (jobs_per_node + 1) * rem + jobs_per_node * (node_id - rem); last = first + jobs_per_node - 1; } return std::make_pair(first, last); } //////////////////////////////////////////////////////////////////////////////// // A helper storage class class edge_t { public: int level; long long diam; edge_t(int level = 0, int diam = 0) : level(level), diam(diam) { } }; //////////////////////////////////////////////////////////////////////////////// // The solver class class level_counter_t { public: int height; int num_discs; int num_wholes; int local_level; scheduler_t sched; std::list<edge_t> hole_diams; long long begin; long long end; long long non_processed; level_counter_t(int min_jobs_per_node) : height(PipeHeight()), num_discs(NumberOfDiscs()), num_wholes(0), local_level(0), sched(PipeHeight(), NumberOfNodes(), min_jobs_per_node), begin(0), end(0) { } void prepare_container(); void exchange_limits(); void insert_discs(); void aggregate_results(); protected: void update_container(edge_t edge) { while(edge.diam < hole_diams.back().diam) { edge.level = hole_diams.back().level; hole_diams.pop_back(); } hole_diams.push_back(edge); } std::pair<long long, long long> get_disk_range() const; void insert_discs_work(long long end_tmp, int &local_level_tmp, int &num_wholes_tmp, long long &non_processed_tmp, std::pair<long long, long long> range) const; }; void level_counter_t::prepare_container() { int my_id = MyNodeId(); if(sched.is_node_used(my_id)) { std::pair<long long, long long> range = sched.get_jobs_for_node(my_id); begin = range.first; end = range.second; edge_t edge; // Set a guard hole_diams.push_back(edge_t(0, 0LL)); // Update current level of discs local_level = begin + 1; SLEEP(my_id); DEBUGNL(my_id << ")"); for(long long i = begin; i <= end; ++i) { update_container(edge_t(i, HoleDiameter(height - i))); } #ifdef DODEB for(auto edge : hole_diams) { DEBUG(edge.level << " " << edge.diam << " | "); } #endif DEBUGNL("\ndisc range: " << get_disk_range().first << " " << get_disk_range().second << " begin " << begin << " end " << end << "\n**********\n"); } } void level_counter_t::exchange_limits() { int my_id = MyNodeId(); int prev_id = my_id - 1; int next_id = my_id + 1; if(sched.is_node_used(my_id)) { // The first node sends nothing if(my_id != 0) { PutLL(prev_id, (++hole_diams.begin())->diam); Send(prev_id); } // The last one receives nothing if(my_id != sched.get_num_used_nodes() - 1) { Receive(next_id); long long diam = GetLL(next_id); // Update the container if necessary if(diam < hole_diams.back().diam) { update_container(edge_t(hole_diams.back().level, diam)); } } SLEEP(my_id); DEBUGNL(my_id << ")"); /*for(auto edge : hole_diams) { DEBUG(edge.level << " " << edge.diam << " | "); }*/ DEBUGNL(""); } } void level_counter_t::insert_discs() { insert_discs_work(end, local_level, num_wholes, non_processed, get_disk_range()); } void level_counter_t::aggregate_results() { int my_id = MyNodeId(); int prev_id = my_id - 1; int next_id = my_id + 1; if(sched.is_node_used(my_id)) { std::pair<long long, long long> disk_range = get_disk_range(); if(my_id == 0) { if(sched.is_node_used(1)) { int excess = local_level - end - 1; PutInt(next_id, (excess > 0) ? excess : 0); PutInt(next_id, local_level); PutLL(next_id, non_processed); Send(next_id); DEBUGNL(my_id << ") agg ll " << local_level << " end " << end << " ex " << excess << " np " << non_processed); } else { // Some discs are still not processed if(non_processed <= NumberOfDiscs()) { local_level += NumberOfDiscs() - non_processed + 1; } printf("%d\n", height - local_level + 1); } } // The others first receive message from prev else { // Get update data from prev Receive(prev_id); int excess_prev = GetInt(prev_id); int local_level_prev = GetInt(prev_id); long long non_processed_prev = GetLL(prev_id); int excess = 0; long long non_processed_tmp; long long last_to_do = disk_range.first - 1; // All discs processed // non excess is possible if(non_processed_prev == NumberOfDiscs() + 1) { local_level = local_level_prev; non_processed = non_processed_prev; } // Something to be done else { // If some discks still need processing // (there can be no excess) if(non_processed_prev <= last_to_do) { // We start from the bottom of this part int local_level_tmp = begin; int num_wholes_tmp = 0; // Inserting the missed discs insert_discs_work(end, local_level_tmp, num_wholes_tmp, non_processed_tmp, std::make_pair(non_processed_prev, last_to_do)); // Still left over from processing if(non_processed_tmp <= last_to_do) { non_processed = non_processed_tmp; } excess = local_level_tmp - begin - 1; DEBUGNL(my_id << ") dddddd " << non_processed_tmp << " " << non_processed << " ex " << excess << " ll " << local_level); } // All the discs that should be done so fare are done else { excess = excess_prev; } // Wholes cannot compensate if(excess > num_wholes) { local_level += excess - num_wholes; excess = local_level - end - 1; } } SLEEP(my_id); DEBUGNL(my_id << ") agg ex_p " << excess_prev << " non_p_pr " << non_processed_prev << " llp " << local_level_prev << " ll " << local_level << " end " << end << " ex " << excess << " np " << non_processed << " npt " << non_processed_tmp << " ltd " << last_to_do); // Finally all but the last send the updated values up if(my_id != sched.get_num_used_nodes() - 1) { // If there is any excess PutInt(next_id, (excess > 0) ? excess : 0); PutInt(next_id, local_level); PutLL(next_id, non_processed); Send(next_id); } // The last one prints the result else { // Some discs are still not processed if(non_processed <= NumberOfDiscs()) { local_level += NumberOfDiscs() - non_processed + 1; } printf("%d\n", height - local_level + 1); } } } } std::pair<long long, long long> level_counter_t::get_disk_range() const { int my_id = MyNodeId(); std::pair<long long, long long> range = std::make_pair(-1LL, -1LL); if(sched.is_node_used(my_id)) { range = sched.get_jobs_for_node(my_id); ++range.first; ++range.second; // Not enough discs for this node if(range.first > NumberOfDiscs()) { return std::make_pair(NumberOfDiscs() + 1, NumberOfDiscs() + 1); } // Less discs than current range else if(range.second > NumberOfDiscs()) { range.second = NumberOfDiscs(); } } return std::move(range); } void level_counter_t::insert_discs_work(long long end_tmp, int &local_level_tmp, int &num_wholes_tmp, long long &non_processed_tmp, std::pair<long long, long long> range) const { int my_id = MyNodeId(); if(sched.is_node_used(my_id)) { if(range.first <= NumberOfDiscs()) { long long diam; long long past_end = end + 1; long long i = range.first; for(; i <= range.second; ++i) { diam = DiscDiameter(i); auto it = hole_diams.rbegin(); // DEBUGNL(my_id << ") d " << i << " placing " << diam) // Done filling the container we cannot process i if(diam > it->diam) { break; } // Level already over the top if(local_level_tmp == past_end) { local_level_tmp++; } // local_level_tmp is below the top and the disk can go in else { for(; local_level_tmp < it->level && it->diam > diam && it != hole_diams.rend(); ++it); // local_level_tmp is the limiter if(local_level_tmp >= it->level) { ++local_level_tmp; } // The disc gets stuck above local_level else { num_wholes_tmp += it->level - local_level_tmp; local_level_tmp = it->level + 1; } } DEBUGNL(my_id << ") place " << i << " at " << local_level_tmp - 1 << " " << diam); } non_processed_tmp = i; DEBUGNL(my_id << ") first not processed " << non_processed_tmp << " " << local_level - end - 1); } else { non_processed_tmp = NumberOfDiscs() + 1; } } } //////////////////////////////////////////////////////////////////////////////// int main() { // Get a solver level_counter_t level_counter(20); level_counter.prepare_container(); SLEEP(1); level_counter.exchange_limits(); SLEEP(1); level_counter.insert_discs(); SLEEP(1); level_counter.aggregate_results(); //aggregate_results(); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | #include <iostream> #include <cmath> #include <limits> #include <vector> #include <list> #include <cstdint> #include <unistd.h> #include "message.h" #include "krazki.h" //#define DODEB #ifdef DODEB #define DEBUG(A) std::cerr << A; #define DEBUGNL(A) std::cerr << A << std::endl; #define SLEEP(A) sleep(A); #else #define DEBUG(A) #define DEBUGNL(A) #define SLEEP(A) #endif //////////////////////////////////////////////////////////////////////////////// // A class for assigning jobs to nodes class scheduler_t { protected: // Minimum reasonable number of indices per node int min_jobs_per_node; long long num_jobs; int num_used_nodes; long long jobs_per_node; public: scheduler_t(long long num_jobs, int num_nodes, int min_jobs_per_node); int get_num_used_nodes() const; bool is_node_used(int node_id) const; std::pair<long long, long long> get_jobs_for_node(int node_id) const; }; scheduler_t::scheduler_t(long long num_jobs, int num_nodes, int min_jobs_per_node) : min_jobs_per_node(std::max(1, min_jobs_per_node)), num_jobs(num_jobs) { if(num_jobs < min_jobs_per_node) { num_used_nodes = 1; jobs_per_node = num_jobs; } else { // At most as many nodes as jobs num_used_nodes = std::min(num_jobs, static_cast<long long>(num_nodes)); // As a result jobs_per_node here is at least 1 jobs_per_node = num_jobs / num_used_nodes; // If the number of jobs per node is smaller than the limit if(jobs_per_node < min_jobs_per_node) { num_used_nodes = num_jobs / min_jobs_per_node; jobs_per_node = num_jobs / num_used_nodes; } } } int scheduler_t::get_num_used_nodes() const { return num_used_nodes; } bool scheduler_t::is_node_used(int node_id) const { return node_id < num_used_nodes; } std::pair<long long, long long> scheduler_t::get_jobs_for_node(int node_id) const { // Unused node if (node_id >= num_used_nodes) { return std::make_pair(-1, -1); } // For the used nodes // Distribute the reminder of jobs equaly long long rem = num_jobs - jobs_per_node * num_used_nodes; long long first; long long last; if (node_id < rem) { first = (jobs_per_node + 1) * node_id; last = first + jobs_per_node; } else { first = (jobs_per_node + 1) * rem + jobs_per_node * (node_id - rem); last = first + jobs_per_node - 1; } return std::make_pair(first, last); } //////////////////////////////////////////////////////////////////////////////// // A helper storage class class edge_t { public: int level; long long diam; edge_t(int level = 0, int diam = 0) : level(level), diam(diam) { } }; //////////////////////////////////////////////////////////////////////////////// // The solver class class level_counter_t { public: int height; int num_discs; int num_wholes; int local_level; scheduler_t sched; std::list<edge_t> hole_diams; long long begin; long long end; long long non_processed; level_counter_t(int min_jobs_per_node) : height(PipeHeight()), num_discs(NumberOfDiscs()), num_wholes(0), local_level(0), sched(PipeHeight(), NumberOfNodes(), min_jobs_per_node), begin(0), end(0) { } void prepare_container(); void exchange_limits(); void insert_discs(); void aggregate_results(); protected: void update_container(edge_t edge) { while(edge.diam < hole_diams.back().diam) { edge.level = hole_diams.back().level; hole_diams.pop_back(); } hole_diams.push_back(edge); } std::pair<long long, long long> get_disk_range() const; void insert_discs_work(long long end_tmp, int &local_level_tmp, int &num_wholes_tmp, long long &non_processed_tmp, std::pair<long long, long long> range) const; }; void level_counter_t::prepare_container() { int my_id = MyNodeId(); if(sched.is_node_used(my_id)) { std::pair<long long, long long> range = sched.get_jobs_for_node(my_id); begin = range.first; end = range.second; edge_t edge; // Set a guard hole_diams.push_back(edge_t(0, 0LL)); // Update current level of discs local_level = begin + 1; SLEEP(my_id); DEBUGNL(my_id << ")"); for(long long i = begin; i <= end; ++i) { update_container(edge_t(i, HoleDiameter(height - i))); } #ifdef DODEB for(auto edge : hole_diams) { DEBUG(edge.level << " " << edge.diam << " | "); } #endif DEBUGNL("\ndisc range: " << get_disk_range().first << " " << get_disk_range().second << " begin " << begin << " end " << end << "\n**********\n"); } } void level_counter_t::exchange_limits() { int my_id = MyNodeId(); int prev_id = my_id - 1; int next_id = my_id + 1; if(sched.is_node_used(my_id)) { // The first node sends nothing if(my_id != 0) { PutLL(prev_id, (++hole_diams.begin())->diam); Send(prev_id); } // The last one receives nothing if(my_id != sched.get_num_used_nodes() - 1) { Receive(next_id); long long diam = GetLL(next_id); // Update the container if necessary if(diam < hole_diams.back().diam) { update_container(edge_t(hole_diams.back().level, diam)); } } SLEEP(my_id); DEBUGNL(my_id << ")"); /*for(auto edge : hole_diams) { DEBUG(edge.level << " " << edge.diam << " | "); }*/ DEBUGNL(""); } } void level_counter_t::insert_discs() { insert_discs_work(end, local_level, num_wholes, non_processed, get_disk_range()); } void level_counter_t::aggregate_results() { int my_id = MyNodeId(); int prev_id = my_id - 1; int next_id = my_id + 1; if(sched.is_node_used(my_id)) { std::pair<long long, long long> disk_range = get_disk_range(); if(my_id == 0) { if(sched.is_node_used(1)) { int excess = local_level - end - 1; PutInt(next_id, (excess > 0) ? excess : 0); PutInt(next_id, local_level); PutLL(next_id, non_processed); Send(next_id); DEBUGNL(my_id << ") agg ll " << local_level << " end " << end << " ex " << excess << " np " << non_processed); } else { // Some discs are still not processed if(non_processed <= NumberOfDiscs()) { local_level += NumberOfDiscs() - non_processed + 1; } printf("%d\n", height - local_level + 1); } } // The others first receive message from prev else { // Get update data from prev Receive(prev_id); int excess_prev = GetInt(prev_id); int local_level_prev = GetInt(prev_id); long long non_processed_prev = GetLL(prev_id); int excess = 0; long long non_processed_tmp; long long last_to_do = disk_range.first - 1; // All discs processed // non excess is possible if(non_processed_prev == NumberOfDiscs() + 1) { local_level = local_level_prev; non_processed = non_processed_prev; } // Something to be done else { // If some discks still need processing // (there can be no excess) if(non_processed_prev <= last_to_do) { // We start from the bottom of this part int local_level_tmp = begin; int num_wholes_tmp = 0; // Inserting the missed discs insert_discs_work(end, local_level_tmp, num_wholes_tmp, non_processed_tmp, std::make_pair(non_processed_prev, last_to_do)); // Still left over from processing if(non_processed_tmp <= last_to_do) { non_processed = non_processed_tmp; } excess = local_level_tmp - begin - 1; DEBUGNL(my_id << ") dddddd " << non_processed_tmp << " " << non_processed << " ex " << excess << " ll " << local_level); } // All the discs that should be done so fare are done else { excess = excess_prev; } // Wholes cannot compensate if(excess > num_wholes) { local_level += excess - num_wholes; excess = local_level - end - 1; } } SLEEP(my_id); DEBUGNL(my_id << ") agg ex_p " << excess_prev << " non_p_pr " << non_processed_prev << " llp " << local_level_prev << " ll " << local_level << " end " << end << " ex " << excess << " np " << non_processed << " npt " << non_processed_tmp << " ltd " << last_to_do); // Finally all but the last send the updated values up if(my_id != sched.get_num_used_nodes() - 1) { // If there is any excess PutInt(next_id, (excess > 0) ? excess : 0); PutInt(next_id, local_level); PutLL(next_id, non_processed); Send(next_id); } // The last one prints the result else { // Some discs are still not processed if(non_processed <= NumberOfDiscs()) { local_level += NumberOfDiscs() - non_processed + 1; } printf("%d\n", height - local_level + 1); } } } } std::pair<long long, long long> level_counter_t::get_disk_range() const { int my_id = MyNodeId(); std::pair<long long, long long> range = std::make_pair(-1LL, -1LL); if(sched.is_node_used(my_id)) { range = sched.get_jobs_for_node(my_id); ++range.first; ++range.second; // Not enough discs for this node if(range.first > NumberOfDiscs()) { return std::make_pair(NumberOfDiscs() + 1, NumberOfDiscs() + 1); } // Less discs than current range else if(range.second > NumberOfDiscs()) { range.second = NumberOfDiscs(); } } return std::move(range); } void level_counter_t::insert_discs_work(long long end_tmp, int &local_level_tmp, int &num_wholes_tmp, long long &non_processed_tmp, std::pair<long long, long long> range) const { int my_id = MyNodeId(); if(sched.is_node_used(my_id)) { if(range.first <= NumberOfDiscs()) { long long diam; long long past_end = end + 1; long long i = range.first; for(; i <= range.second; ++i) { diam = DiscDiameter(i); auto it = hole_diams.rbegin(); // DEBUGNL(my_id << ") d " << i << " placing " << diam) // Done filling the container we cannot process i if(diam > it->diam) { break; } // Level already over the top if(local_level_tmp == past_end) { local_level_tmp++; } // local_level_tmp is below the top and the disk can go in else { for(; local_level_tmp < it->level && it->diam > diam && it != hole_diams.rend(); ++it); // local_level_tmp is the limiter if(local_level_tmp >= it->level) { ++local_level_tmp; } // The disc gets stuck above local_level else { num_wholes_tmp += it->level - local_level_tmp; local_level_tmp = it->level + 1; } } DEBUGNL(my_id << ") place " << i << " at " << local_level_tmp - 1 << " " << diam); } non_processed_tmp = i; DEBUGNL(my_id << ") first not processed " << non_processed_tmp << " " << local_level - end - 1); } else { non_processed_tmp = NumberOfDiscs() + 1; } } } //////////////////////////////////////////////////////////////////////////////// int main() { // Get a solver level_counter_t level_counter(20); level_counter.prepare_container(); SLEEP(1); level_counter.exchange_limits(); SLEEP(1); level_counter.insert_discs(); SLEEP(1); level_counter.aggregate_results(); //aggregate_results(); return 0; } |