/* * Copyright (C) 2016 Paweł Widera * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details: * http://www.gnu.org/licenses/gpl.html */ #include "krazki.h" #include "message.h" #define height PipeHeight #define discs NumberOfDiscs #define read_hole HoleDiameter #define read_disc DiscDiameter #define node_id MyNodeId #define nodes NumberOfNodes #define push PutInt #define pop GetInt #define push_long PutLL #define pop_long GetLL #define send Send #define receive Receive #include <vector> #include <unordered_map> #include <cmath> #include <iostream> using namespace std; //#define DEBUG 666 #ifdef DEBUG #define DBG(key, value) cerr << key << " " << value << endl; #define DBGa(array) for (auto a: array) { cerr << a << " "; } cerr << endl; #else #define DBG(key, value) #define DBGa(array) #endif int main() { int n = height(); int m = discs(); int k = nodes(); // for small input limit the number of used nodes int jobs = max(1, n / 2); if (k > jobs) { k = jobs; if (node_id() >= jobs) { return 0; } } // select range to process in this node int range = n / k; int begin = node_id() * range; int end = (node_id() + 1) * range; if (node_id() == k - 1) { end = n; } // neighbouring nodes int next = node_id() + 1; int previous = node_id() - 1; long long largest_hole = 2 * pow(10, 18) + 1; long long smallest_hole = largest_hole; // read hole diameters in range(begin, end) unordered_map<long long, int> max_level; max_level.reserve(end - begin); for (int i = begin; i < end; ++i) { long long hole = read_hole(i + 1); max_level[hole + 1] = i; smallest_hole = min(smallest_hole, hole); } // send smallest_hole to the next node if (node_id() == 0) { push_long(1, smallest_hole); send(1); } else { // receive from the previous node int node = receive(-1); largest_hole = pop_long(node); // send to the next node if (next < k) { push_long(next, smallest_hole); send(next); } } int gap = 0; int level = end; int overflow = 0; int last_level = end + 1; // push the disks through the pipe for (int i = 0; i < m; ++i) { long long disc = read_disc(i + 1); // look at all disc that can stuck in this part of the pipe // if last node, don't skipp discs passing through if (disc <= largest_hole && (disc > smallest_hole || next == k)) { // find stopping level for each disk if (max_level.count(disc)) { level = min(max_level[disc], last_level - 1); } else { if (disc <= smallest_hole) { level = end; } else { level = begin; } } // remember gaps between disks gap += max(0, last_level - level - 1); last_level = level; // pipe blocked, can't place more discs if (level == begin) { overflow = m - i - 1; } } } DBG("level", level) DBG("gap", gap) DBG("overflow", overflow) DBG("small", smallest_hole) DBG("large", largest_hole) DBG("---", "---") int new_level = level; // start sending from the last node if (next == k) { push(previous, overflow); send(previous); } else { // receive int node = receive(-1); int previous_overflow = pop(node); DBG("prev", previous_overflow) DBG("nlev", new_level) // update disks state if (overflow > 0) { overflow += max(0, previous_overflow - gap); DBG("over over", overflow) } else { new_level -= max(0, previous_overflow - gap); DBG("nlev", new_level) overflow = max(0, -new_level); DBG("over level", overflow) } // send to previous node if (previous >= 0) { push(previous, overflow); send(previous); } // print the result in node 0 else { if (overflow > 0) { new_level = 0; } cout << new_level << endl; } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | /* * Copyright (C) 2016 Paweł Widera * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details: * http://www.gnu.org/licenses/gpl.html */ #include "krazki.h" #include "message.h" #define height PipeHeight #define discs NumberOfDiscs #define read_hole HoleDiameter #define read_disc DiscDiameter #define node_id MyNodeId #define nodes NumberOfNodes #define push PutInt #define pop GetInt #define push_long PutLL #define pop_long GetLL #define send Send #define receive Receive #include <vector> #include <unordered_map> #include <cmath> #include <iostream> using namespace std; //#define DEBUG 666 #ifdef DEBUG #define DBG(key, value) cerr << key << " " << value << endl; #define DBGa(array) for (auto a: array) { cerr << a << " "; } cerr << endl; #else #define DBG(key, value) #define DBGa(array) #endif int main() { int n = height(); int m = discs(); int k = nodes(); // for small input limit the number of used nodes int jobs = max(1, n / 2); if (k > jobs) { k = jobs; if (node_id() >= jobs) { return 0; } } // select range to process in this node int range = n / k; int begin = node_id() * range; int end = (node_id() + 1) * range; if (node_id() == k - 1) { end = n; } // neighbouring nodes int next = node_id() + 1; int previous = node_id() - 1; long long largest_hole = 2 * pow(10, 18) + 1; long long smallest_hole = largest_hole; // read hole diameters in range(begin, end) unordered_map<long long, int> max_level; max_level.reserve(end - begin); for (int i = begin; i < end; ++i) { long long hole = read_hole(i + 1); max_level[hole + 1] = i; smallest_hole = min(smallest_hole, hole); } // send smallest_hole to the next node if (node_id() == 0) { push_long(1, smallest_hole); send(1); } else { // receive from the previous node int node = receive(-1); largest_hole = pop_long(node); // send to the next node if (next < k) { push_long(next, smallest_hole); send(next); } } int gap = 0; int level = end; int overflow = 0; int last_level = end + 1; // push the disks through the pipe for (int i = 0; i < m; ++i) { long long disc = read_disc(i + 1); // look at all disc that can stuck in this part of the pipe // if last node, don't skipp discs passing through if (disc <= largest_hole && (disc > smallest_hole || next == k)) { // find stopping level for each disk if (max_level.count(disc)) { level = min(max_level[disc], last_level - 1); } else { if (disc <= smallest_hole) { level = end; } else { level = begin; } } // remember gaps between disks gap += max(0, last_level - level - 1); last_level = level; // pipe blocked, can't place more discs if (level == begin) { overflow = m - i - 1; } } } DBG("level", level) DBG("gap", gap) DBG("overflow", overflow) DBG("small", smallest_hole) DBG("large", largest_hole) DBG("---", "---") int new_level = level; // start sending from the last node if (next == k) { push(previous, overflow); send(previous); } else { // receive int node = receive(-1); int previous_overflow = pop(node); DBG("prev", previous_overflow) DBG("nlev", new_level) // update disks state if (overflow > 0) { overflow += max(0, previous_overflow - gap); DBG("over over", overflow) } else { new_level -= max(0, previous_overflow - gap); DBG("nlev", new_level) overflow = max(0, -new_level); DBG("over level", overflow) } // send to previous node if (previous >= 0) { push(previous, overflow); send(previous); } // print the result in node 0 else { if (overflow > 0) { new_level = 0; } cout << new_level << endl; } } return 0; } |