1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#include <vector>
#include <math.h>
#include <string>
#include <iostream>
#include <sstream>
#include <limits>
#include <cstring>
#include <array>
#include <algorithm>

//#define PA2016_TEST

#ifdef PA2016_TEST
#define ASSERT( condition ) if ( !( condition ) ) { __debugbreak(); }
#define PAUSE_CONSOLE system( "pause" );
#define DEBUG_ONLY( line ) line;
#else
#define ASSERT( condition )
#define PAUSE_CONSOLE 
#define DEBUG_ONLY( line )
#endif

typedef unsigned int uint;

int Min( int a, int b )
{
	return a < b ? a : b;
}

struct STaskInfo
{
	STaskInfo( uint startTime, uint endTime, uint parts )
		: m_startTime( startTime )
		, m_endTime( endTime )
		, m_parts( parts )
	{}

	uint m_startTime;
	uint m_endTime;
	uint m_parts;
};

struct SPriority
{
	SPriority( double priority, STaskInfo* task )
		: m_priority( priority )
		, m_task( task )
	{
	}

	double m_priority;
	STaskInfo* m_task;
};

struct STimelineEvent
{
	STimelineEvent( uint time, STaskInfo* info, bool isEnd )
		: m_time( time )
		, m_task( info )
		, m_isEnd( isEnd )
	{
	}

	STaskInfo* m_task;
	uint m_time;
	bool m_isEnd;
};

class Scheduler
{
public:
	Scheduler( uint numOfTasks, uint processors ) 
		: m_processors( processors )
	{ 
		m_taskInfos.reserve( numOfTasks );
		m_openTasks.reserve( numOfTasks );
		m_tempPriorities.reserve( numOfTasks );
	}

	void AddTask( uint startTime, uint endTime, uint parts )
	{
		m_taskInfos.push_back( STaskInfo( startTime, endTime, parts ) );
		STaskInfo* info = &m_taskInfos[ m_taskInfos.size() - 1 ];
		AddEvent( info, startTime, false );
		AddEvent( info, endTime - 1, true );
	}

	bool TryToSchedule()
	{
		// Sort timeline:
		std::sort( m_timeline.begin(), m_timeline.end(), []( const STimelineEvent& a, const STimelineEvent& b )
		{
			return a.m_time < b.m_time;
		} );

		uint prevTime = m_timeline[ 0 ].m_time - 1;

		const uint timelineSize = m_timeline.size();
		for( uint i = 0; i < timelineSize; ++i )
		{
			// Process events( add to open task list if needed ):
			uint curr_time = m_timeline[ i ].m_time;
			OnEvent( m_timeline[ i ] );

			bool cont = true;
			for( uint j = i + 1; j < timelineSize; ++j )
			{
				if( m_timeline[ j ].m_time <= curr_time )
				{
					OnEvent( m_timeline[ j ] );
				}
				else
				{
					// We have processed more events, so update outher loop.
					i = j - 1;
					break;
				}
			}

			if( !Schedule( curr_time - prevTime, curr_time ) )
				return false;

			prevTime = curr_time;
		}

		return true;
	}

private:
	bool Schedule( uint timeSlice, uint currTime )
	{
		m_tempPriorities.clear();

		// Calculate priority queue:
		for( auto* task : m_openTasks )
		{
			int priority = CalcPriority( task, currTime, timeSlice );

			if( priority < 0 )
				return false; // Scheduler has failed to schedule task at time.

			m_tempPriorities.push_back( SPriority( priority, task ) );
		}

		// Sort priorites:
		std::sort( m_tempPriorities.begin(), m_tempPriorities.end(), []( const SPriority& a, const SPriority& b )
		{
			return a.m_priority < b.m_priority;
		} );

		GrabTasks( timeSlice );

		RemoveDoneTasksFromOpenList();

		return true;
	}

	void GrabTasks( uint timeslicePerSingleProc )
	{
		int slotsAvailalbeAcrossAllProcessors = timeslicePerSingleProc*m_processors;
		

		for( auto priority : m_tempPriorities )
		{
			uint& taskParts = priority.m_task->m_parts;

			int partsTaken = Min( taskParts, timeslicePerSingleProc );
			taskParts -= partsTaken;

			slotsAvailalbeAcrossAllProcessors -= partsTaken;

			if( slotsAvailalbeAcrossAllProcessors <= 0 )
			{
				// We have reach maximum workload. It is possible that some tasks part cannot
				// be taken, so return them:
				taskParts += -slotsAvailalbeAcrossAllProcessors; 

				return;
			}

		}
	}

	void RemoveDoneTasksFromOpenList()
	{
		uint openTasksSize = m_openTasks.size();
		for( uint i = 0; i < openTasksSize; )
		{
			if( m_openTasks[ i ]->m_parts == 0 )
			{
				m_openTasks[ i ] = m_openTasks[ openTasksSize - 1 ];
				--openTasksSize;
			}
			else
				++i;
		}

		m_openTasks.resize( openTasksSize );
	}

	void AddEvent( STaskInfo* task, uint time, bool isEnd )
	{
		m_timeline.push_back( STimelineEvent( time, task, isEnd ) );
	}

	void OnEvent( const STimelineEvent& event )
	{
		if( !event.m_isEnd )
			m_openTasks.push_back( event.m_task );
	}

	int CalcPriority( const STaskInfo* info, uint currTime, uint timeslice )
	{
		// 0 - biggest priorty;
		auto val = info->m_endTime - info->m_parts - currTime + timeslice - 1;
		return val;
	}

	std::vector< STaskInfo > m_taskInfos;
	std::vector< STimelineEvent > m_timeline;
	std::vector< STaskInfo* > m_openTasks;
	std::vector< SPriority > m_tempPriorities;
	uint m_processors;
};

void TestAll()
{
}

int main()
{
	DEBUG_ONLY( TestAll() );

	uint numOfTasks = 0;
	std::cin >> numOfTasks;

	uint numOfProcessors = 0;
	std::cin >> numOfProcessors;

	Scheduler scheduler( numOfTasks, numOfProcessors );

	for( uint i = 0; i < numOfTasks; ++i )
	{
		uint taskStart = 0;
		std::cin >> taskStart;

		uint taskMaxEnd = 0;
		std::cin >> taskMaxEnd;

		uint taskParts = 0;
		std::cin >> taskParts;

		scheduler.AddTask( taskStart, taskMaxEnd, taskParts );

	}

	if( scheduler.TryToSchedule() )
		std::cout << "TAK";
	else
		std::cout << "NIE";

	return 0;
}