1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <sstream>
#include <set>
#include <map>
#include <vector>
#include <list>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
#include <queue>
#include <bitset>		//UWAGA - w czasie kompilacji musi byc znany rozmiar wektora - nie mozna go zmienic
#include <cassert>
#include <iomanip>		//do setprecision
#include <ctime>
#include <complex>
using namespace std;

#define FOR(i,b,e) for(int i=(b);i<(e);++i)
#define FORQ(i,b,e) for(int i=(b);i<=(e);++i)
#define FORD(i,b,e) for(int i=(b)-1;i>=(e);--i)
#define REP(x, n) for(int x = 0; x < (n); ++x)

#define ST first
#define ND second
#define PB push_back
#define MP make_pair
#define LL long long
#define ULL unsigned LL
#define LD long double

const double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342;

// ======== PUSH-RELABEL by Adam Polak ========
// maksymalny przeplyw w O(V^3)
const int N = 500 + 10;
struct edge {
	int v;
	LL cap, flow;
	int back_ind;
	edge *back;
	edge(int vi, LL ci) : v(vi), cap(ci) {}
};
/* Usage:
1) n=...; s=...; t=...;
2) REP(i,n) g[i].clear();
3) add_edge(...);
4) compute_flow();
*/
int n, s, t;
LL e[N], h[N];
vector<edge> g[N];
vector<edge>::iterator cur[N];
void bfs(int start, int start_h) {
	queue<int> q;
	h[start] = start_h;
	for (q.push(start); !q.empty(); q.pop()) {
		int u = q.front();
		for (auto i : g[u])
			if (i.back->flow < i.back->cap && h[i.v] > h[u] + 1) {
				h[i.v] = h[u] + 1;
				q.push(i.v);
			}
	}
}
LL compute_flow() {
	queue<int> q;
	REP(i, n) {
		for (auto &j : g[i]) {
			j.flow = 0;
			j.back = &g[j.v][j.back_ind];
		}
		cur[i] = g[i].begin();
		h[i] = e[i] = 0;
	}
	for (auto &i : g[s]) {
		i.flow = i.cap;
		i.back->flow = -i.flow;
		if (e[i.v] == 0 && i.v != t) q.push(i.v);
		e[i.v] += i.flow;
	}
	h[s] = n;
	int relabel_counter = 0;
	for (; !q.empty(); q.pop()) {
		int u = q.front();
		while (e[u] > 0) {
			if (cur[u] == g[u].end()) { // relabel
				relabel_counter++;
				h[u] = 2 * n + 1;
				for (auto i : g[u]) if (i.flow < i.cap) h[u] = min(h[u], h[i.v] + 1);
				cur[u] = g[u].begin();
				continue;
			}
			if (cur[u]->flow < cur[u]->cap && h[u] == h[cur[u]->v] + 1) { // push
				LL d = min(e[u], cur[u]->cap - cur[u]->flow);
				cur[u]->flow += d;
				cur[u]->back->flow -= d;
				e[u] -= d;
				e[cur[u]->v] += d;
				if (e[cur[u]->v] == d && cur[u]->v != t && cur[u]->v != s) q.push(cur[u]->v);
			}
			else cur[u]++;
		}
		if (relabel_counter >= n) {
			REP(i, n) h[i] = 2 * n + 1;
			bfs(t, 0);
			bfs(s, n);
			relabel_counter = 0;
		}
	}
	return e[t];
}
void add_edge(int a, int b, LL c, int c_back = 0) {
	assert(a != b); // NIE wrzucac petelek!
	g[a].push_back(edge(b, c));
	g[b].push_back(edge(a, c_back));
	g[a].back().back_ind = g[b].size() - 1;
	g[b].back().back_ind = g[a].size() - 1;
}

#define MR 110

// zadania
pair < int, pair<int, int>> tasks[MR];

bool can(int wsk, int beg, int end)
{
	// czy mozna wykonywac zadanie wsk w przedziale [beg,end]
	// nie wykonac!!

	// jesli zaczyna sie lub konczy poza przedzialem, to nie mozna
	if (tasks[wsk].second.first >= end || tasks[wsk].second.second <= beg)
		return 0;

	return 1;
}

int main()
{
	int z, m;
	scanf("%d%d", &z, &m);
	// posortuj zdarzenia
	set<int> S;
	REP(i, z)
	{
		scanf("%d%d%d", &tasks[i].second.first, &tasks[i].second.second, &tasks[i].first);
		S.insert(tasks[i].second.first);
		S.insert(tasks[i].second.second);
	}
	// buduj graf
	n = z + S.size() - 1 + 2;
	s = 0; t = n - 1;
	// czasy wykonania zadan
	int sum = 0;
	REP(i, z)
	{
		add_edge(s, i + 1, tasks[i].first);
		sum += tasks[i].first;
	}
	int last = z;
	for (auto it = S.begin(); it != S.end(); it++)
	{
		auto itn = it; itn++;
		if (itn == S.end())
			break;
		// kolejny wierzcholek do zrobienia
		last++;
		int beg = *it, end = *itn;
		int tk = end - beg;
		add_edge(last, t, m*tk);
		REP(i, z)
			if (can(i, beg, end))
				add_edge(i + 1, last, tk);
			else
				add_edge(i + 1, last, 0);
	}

	if (compute_flow() == sum)
		printf("TAK\n");
	else
		printf("NIE\n");

	return 0;
}