#include <cstdio> //#include <iostream> #include <algorithm> #include <vector> using namespace std; #define debug 0 // Na podstawie "Algorytmiki Praktycznej" Piotra Stanczyka typedef vector<int> VI; const int INF = 1000000001; #define VAR(v,n) __typeof(n) v=(n) #define REP(x, n) for(int x=0; x<(n); ++x) #define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i) #define SIZE(x) (int)x.size() #define ITER typename vector<Ed>::iterator #define PB push_back template <class V, class E> struct Graph { struct Ed : E { int v; Ed(E p, int w) : E(p), v(w) { } }; struct Ve : V, vector<Ed> { }; vector<Ve> g; Graph(int n = 0) : g(n) { } void EdgeD(int b, int e, E d = E()) { g[b].PB(Ed(d, e)); } void EdgeU(int b, int e, E d = E()) { Ed eg(d, e); eg.rev = SIZE(g[e]) + (b == e); g[b].PB(eg); eg.rev = SIZE(g[eg.v = b]) - 1; eg.c = 0; g[e].PB(eg); } int out; vector<ITER> itL; VI vis; int FlowDfs(int x, int fl) { int r = 0, f; if (x == out || !fl) return fl; for (ITER & it = itL[x]; it != g[x].end(); ++it) { if (vis[x] + 1 == vis[it->v] && (it->c - it->f)) { // it->f += f = FlowDfs(it->v, fl <? it->c - it->f); // TODO f = FlowDfs(it->v, min(fl,it->c - it->f)); if (debug) printf("v = %d, rev = %d, f: %d %d, dif = %d\n", it->v, it->rev, it->f, g[it->v][it->rev].f, f); it->f += f; g[it->v][it->rev].f -= f; r += f; fl -= f; if (!fl) break; } } return r; } int MaxFlow(int s, int f) { int res = 0, n = SIZE(g); vis.resize(n); itL.resize(n); out = f; REP(x, n) FOREACH(it, g[x]) it->f = 0; int q[n], b, e; while (1) { REP(x, n) vis[x] = -1, itL[x] = g[x].begin(); for (q[vis[s] = b = e = 0] = s; b <= e; ++b) FOREACH(it, g[q[b]]) if (vis[it->v] == -1 && it->c - it->f > 0) vis[q[++e] = it->v] = vis[q[b]] + 1; if (vis[f] == -1) break; res += FlowDfs(s, INF); } return res; } }; struct Ve { int rev, c, f; }; struct Vs { int t; }; /* int main() { int n, m, s, f, b, e; cin >> n >> m >> s >> f; Graph<Vs, Ve> g(n); Ve l; REP(x, m) { cin >> b >> e >> l.c; g.EdgeU(b, e, l); } cout << "Wielkosc calkowitego przeplywu: " << g.MaxFlow(s, f) << endl; cout << "Wielkosc przeplywu dla kolejnych krawedzi:" << endl; REP(x, SIZE(g.g)) FOREACH(it, g.g[x]) if (it->f > 0) cout << "f(" << x << ", " << it->v << ") = " << it->f << endl; return 0; } */ struct task { int p, k, c; }; task t[100]; int n, m; int x[200]; int stamp[200], s; // number of timestamps int main() { scanf("%d %d", &n, &m); int sum_c = 0; for (int i = 0; i < n; ++i) { scanf("%d %d %d", &t[i].p, &t[i].k, &t[i].c); sum_c += t[i].c; x[2*i] = t[i].p; x[2*i+1] = t[i].k; } sort(x, x+2*n); s = 0; stamp[s++] = x[0]; for (int i = 1; i < 2*n; ++i) { if (x[i] != x[i-1]) stamp[s++] = x[i]; } if (debug) { printf("stamps\n"); for (int i = 0; i < s; ++i) printf("%d ", stamp[i]); printf("\n"); } int new_n = 1 + n + s; Graph<Vs, Ve> g(new_n); Ve l; for (int i = 0; i < n; ++i) { l.c = t[i].c; if (debug >= 2) printf("add %d %d (%d)\n", 0, 1+i, l.c); g.EdgeU(0, 1+i, l); // l.c = 0; // g.EdgeD(1+i, 0, l); } for (int i = 0; i < n; ++i) { for (int j = 0; j < s-1; ++j) { if (t[i].p <= stamp[j] && t[i].k >= stamp[j+1]) { l.c = (stamp[j+1]-stamp[j]); if (debug >= 2) printf("add %d %d (%d)\n", 1+i, 1+n+j, l.c); g.EdgeU(1 + i, 1 + n + j, l); // l.c = 0; // g.EdgeD(1 + n + j, 1 + i, l); } } } for (int i = 0; i < s-1; ++i) { l.c = m * (stamp[i+1]-stamp[i]); if (debug >= 2) printf("add %d %d (%d)\n", 1+n+i, n+s, l.c); g.EdgeU(1 + n + i, n+s, l); // l.c = 0; // g.EdgeD(n+s, 1 + n + i, l); } int M = g.MaxFlow(0, n+s); if (M >= sum_c) printf("TAK\n"); else printf("NIE\n"); if (M >= sum_c && debug) { } if (debug) { printf("suma c = %d\n", sum_c); printf("Wielkosc calkowitego przeplywu: %d\n", g.MaxFlow(0, n+s)); printf("Wielkosc przeplywu dla kolejnych krawedzi:\n"); REP(y, SIZE(g.g)) FOREACH(it, g.g[y]) { // if (it->f != 0) { // if (y > it->v && it->f > 0) // printf("ERROR **************************************************************\n"); printf("f(%d, %d) = %d, c = %d\n", y, it->v, it->f, it->c); // } } } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 | #include <cstdio> //#include <iostream> #include <algorithm> #include <vector> using namespace std; #define debug 0 // Na podstawie "Algorytmiki Praktycznej" Piotra Stanczyka typedef vector<int> VI; const int INF = 1000000001; #define VAR(v,n) __typeof(n) v=(n) #define REP(x, n) for(int x=0; x<(n); ++x) #define FOREACH(i,c) for(VAR(i,(c).begin());i!=(c).end();++i) #define SIZE(x) (int)x.size() #define ITER typename vector<Ed>::iterator #define PB push_back template <class V, class E> struct Graph { struct Ed : E { int v; Ed(E p, int w) : E(p), v(w) { } }; struct Ve : V, vector<Ed> { }; vector<Ve> g; Graph(int n = 0) : g(n) { } void EdgeD(int b, int e, E d = E()) { g[b].PB(Ed(d, e)); } void EdgeU(int b, int e, E d = E()) { Ed eg(d, e); eg.rev = SIZE(g[e]) + (b == e); g[b].PB(eg); eg.rev = SIZE(g[eg.v = b]) - 1; eg.c = 0; g[e].PB(eg); } int out; vector<ITER> itL; VI vis; int FlowDfs(int x, int fl) { int r = 0, f; if (x == out || !fl) return fl; for (ITER & it = itL[x]; it != g[x].end(); ++it) { if (vis[x] + 1 == vis[it->v] && (it->c - it->f)) { // it->f += f = FlowDfs(it->v, fl <? it->c - it->f); // TODO f = FlowDfs(it->v, min(fl,it->c - it->f)); if (debug) printf("v = %d, rev = %d, f: %d %d, dif = %d\n", it->v, it->rev, it->f, g[it->v][it->rev].f, f); it->f += f; g[it->v][it->rev].f -= f; r += f; fl -= f; if (!fl) break; } } return r; } int MaxFlow(int s, int f) { int res = 0, n = SIZE(g); vis.resize(n); itL.resize(n); out = f; REP(x, n) FOREACH(it, g[x]) it->f = 0; int q[n], b, e; while (1) { REP(x, n) vis[x] = -1, itL[x] = g[x].begin(); for (q[vis[s] = b = e = 0] = s; b <= e; ++b) FOREACH(it, g[q[b]]) if (vis[it->v] == -1 && it->c - it->f > 0) vis[q[++e] = it->v] = vis[q[b]] + 1; if (vis[f] == -1) break; res += FlowDfs(s, INF); } return res; } }; struct Ve { int rev, c, f; }; struct Vs { int t; }; /* int main() { int n, m, s, f, b, e; cin >> n >> m >> s >> f; Graph<Vs, Ve> g(n); Ve l; REP(x, m) { cin >> b >> e >> l.c; g.EdgeU(b, e, l); } cout << "Wielkosc calkowitego przeplywu: " << g.MaxFlow(s, f) << endl; cout << "Wielkosc przeplywu dla kolejnych krawedzi:" << endl; REP(x, SIZE(g.g)) FOREACH(it, g.g[x]) if (it->f > 0) cout << "f(" << x << ", " << it->v << ") = " << it->f << endl; return 0; } */ struct task { int p, k, c; }; task t[100]; int n, m; int x[200]; int stamp[200], s; // number of timestamps int main() { scanf("%d %d", &n, &m); int sum_c = 0; for (int i = 0; i < n; ++i) { scanf("%d %d %d", &t[i].p, &t[i].k, &t[i].c); sum_c += t[i].c; x[2*i] = t[i].p; x[2*i+1] = t[i].k; } sort(x, x+2*n); s = 0; stamp[s++] = x[0]; for (int i = 1; i < 2*n; ++i) { if (x[i] != x[i-1]) stamp[s++] = x[i]; } if (debug) { printf("stamps\n"); for (int i = 0; i < s; ++i) printf("%d ", stamp[i]); printf("\n"); } int new_n = 1 + n + s; Graph<Vs, Ve> g(new_n); Ve l; for (int i = 0; i < n; ++i) { l.c = t[i].c; if (debug >= 2) printf("add %d %d (%d)\n", 0, 1+i, l.c); g.EdgeU(0, 1+i, l); // l.c = 0; // g.EdgeD(1+i, 0, l); } for (int i = 0; i < n; ++i) { for (int j = 0; j < s-1; ++j) { if (t[i].p <= stamp[j] && t[i].k >= stamp[j+1]) { l.c = (stamp[j+1]-stamp[j]); if (debug >= 2) printf("add %d %d (%d)\n", 1+i, 1+n+j, l.c); g.EdgeU(1 + i, 1 + n + j, l); // l.c = 0; // g.EdgeD(1 + n + j, 1 + i, l); } } } for (int i = 0; i < s-1; ++i) { l.c = m * (stamp[i+1]-stamp[i]); if (debug >= 2) printf("add %d %d (%d)\n", 1+n+i, n+s, l.c); g.EdgeU(1 + n + i, n+s, l); // l.c = 0; // g.EdgeD(n+s, 1 + n + i, l); } int M = g.MaxFlow(0, n+s); if (M >= sum_c) printf("TAK\n"); else printf("NIE\n"); if (M >= sum_c && debug) { } if (debug) { printf("suma c = %d\n", sum_c); printf("Wielkosc calkowitego przeplywu: %d\n", g.MaxFlow(0, n+s)); printf("Wielkosc przeplywu dla kolejnych krawedzi:\n"); REP(y, SIZE(g.g)) FOREACH(it, g.g[y]) { // if (it->f != 0) { // if (y > it->v && it->f > 0) // printf("ERROR **************************************************************\n"); printf("f(%d, %d) = %d, c = %d\n", y, it->v, it->f, it->c); // } } } return 0; } |