#include<bits/stdc++.h> #define ALL(X) X.begin(),X.end() #define FOR(I,A,B) for(int (I) = (A); (I) <= (B); (I)++) #define FORW(I,A,B) for(int (I) = (A); (I) < (B); (I)++) #define FORD(I,A,B) for(int (I) = (A); (I) >= (B); (I)--) #define CLEAR(X) memset(X,0,sizeof(X)) #define SIZE(X) int(X.size()) #define CONTAINS(A,X) (A.find(X) != A.end()) #define PB push_back #define MP make_pair #define X first #define Y second using namespace std; template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U> &_p) { return os << "(" << _p.X << "," << _p.Y << ")"; } template<typename T> ostream& operator << (ostream &os, const vector<T>& _V) { bool f = true; os << "["; for(auto v: _V) { os << (f ? "" : ",") << v; f = false; } return os << "]"; } template<typename T> ostream& operator << (ostream &os, const set<T>& _S) { bool f = true; os << "("; for(auto s: _S) { os << (f ? "" : ",") << s; f = false; } return os << ")"; } template<typename T, typename U> ostream& operator << (ostream &os, const map<T, U>& _M) { return os << set<pair<T, U>>(ALL(_M)); } typedef signed long long slong; typedef long double ldouble; const slong INF = 1000000100; const ldouble EPS = 1e-9; namespace MaxFlow { struct edge { int u, p; slong f, c; edge(int _u, slong _f, slong _c, int _p) : u(_u), p(_p), f(_f), c(_c) {} }; const int MAXE = 30100; const int MAXV = 5050; int D[MAXV]; bool V[MAXV]; int L[MAXV]; vector<edge> G[MAXV]; int E, S, T; void clear() { FORW(i,0,MAXV) G[i].clear(); E = 0; } void add_edge(int a, int b, slong f) { ++E; if(a == b) return; G[a].PB(edge(b, 0, f, SIZE(G[b]))); G[b].PB(edge(a, 0, 0, SIZE(G[a])-1)); } bool bfs() { CLEAR(V); queue<int> Q; Q.push(S); D[S] = 0; V[S] = true; while(!Q.empty()) { int v = Q.front(); Q.pop(); for(edge &e: G[v]) if(!V[e.u] and e.c - e.f > 0) { V[e.u] = true; D[e.u] = D[v]+1; Q.push(e.u); } } return V[T]; } slong dfs(int v, slong f) { if(v == T or f == 0) return f; slong r = 0; for(int &e_id = L[v]; e_id < SIZE(G[v]); ++e_id) { edge &e = G[v][e_id]; if(D[v]+1 != D[e.u] or e.c == e.f) { continue; } slong c = dfs(e.u, min(f-r, e.c - e.f)); e.f += c; G[e.u][e.p].f -= c; r += c; if(r == f) break; } return r; } slong flow() { slong result = 0; while(bfs()) { CLEAR(L); result += dfs(S, 10000000000000000LL); } return result; } } int N, M; const int MAXN = 111; int P[MAXN], K[MAXN], C[MAXN]; void read_data() { scanf("%d %d", &N, &M); FOR(i,1,N) { scanf("%d %d %d", &P[i], &K[i], &C[i]); } } void solve() { MaxFlow::clear(); vector<int> ts; int total = 0; FOR(i,1,N) { ts.PB(P[i]); ts.PB(K[i]); total += C[i]; } sort(ALL(ts)); int cur_node = N + 10; int source = N + 1, sink = N + 2; MaxFlow::S = source; MaxFlow::T = sink; FOR(i,1,N) { MaxFlow::add_edge(i, sink, C[i]); } FORW(i,1,SIZE(ts)) { int t = ts[i] - ts[i-1]; if(t <= 0) continue; int cnt = 0; // how many processes can we run in parallel FOR(j,1,N) { int overlap = min(ts[i],K[j]) - max(ts[i-1],P[j]); if(P[j] <= ts[i-1] && ts[i] <= K[j]) { MaxFlow::add_edge(cur_node, j, t); cnt++; } } MaxFlow::add_edge(source, cur_node, t*M); cur_node++; } int ans = MaxFlow::flow(); if(ans == total) { printf("TAK\n"); } else { printf("NIE\n"); } } int main() { read_data(); solve(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 | #include<bits/stdc++.h> #define ALL(X) X.begin(),X.end() #define FOR(I,A,B) for(int (I) = (A); (I) <= (B); (I)++) #define FORW(I,A,B) for(int (I) = (A); (I) < (B); (I)++) #define FORD(I,A,B) for(int (I) = (A); (I) >= (B); (I)--) #define CLEAR(X) memset(X,0,sizeof(X)) #define SIZE(X) int(X.size()) #define CONTAINS(A,X) (A.find(X) != A.end()) #define PB push_back #define MP make_pair #define X first #define Y second using namespace std; template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U> &_p) { return os << "(" << _p.X << "," << _p.Y << ")"; } template<typename T> ostream& operator << (ostream &os, const vector<T>& _V) { bool f = true; os << "["; for(auto v: _V) { os << (f ? "" : ",") << v; f = false; } return os << "]"; } template<typename T> ostream& operator << (ostream &os, const set<T>& _S) { bool f = true; os << "("; for(auto s: _S) { os << (f ? "" : ",") << s; f = false; } return os << ")"; } template<typename T, typename U> ostream& operator << (ostream &os, const map<T, U>& _M) { return os << set<pair<T, U>>(ALL(_M)); } typedef signed long long slong; typedef long double ldouble; const slong INF = 1000000100; const ldouble EPS = 1e-9; namespace MaxFlow { struct edge { int u, p; slong f, c; edge(int _u, slong _f, slong _c, int _p) : u(_u), p(_p), f(_f), c(_c) {} }; const int MAXE = 30100; const int MAXV = 5050; int D[MAXV]; bool V[MAXV]; int L[MAXV]; vector<edge> G[MAXV]; int E, S, T; void clear() { FORW(i,0,MAXV) G[i].clear(); E = 0; } void add_edge(int a, int b, slong f) { ++E; if(a == b) return; G[a].PB(edge(b, 0, f, SIZE(G[b]))); G[b].PB(edge(a, 0, 0, SIZE(G[a])-1)); } bool bfs() { CLEAR(V); queue<int> Q; Q.push(S); D[S] = 0; V[S] = true; while(!Q.empty()) { int v = Q.front(); Q.pop(); for(edge &e: G[v]) if(!V[e.u] and e.c - e.f > 0) { V[e.u] = true; D[e.u] = D[v]+1; Q.push(e.u); } } return V[T]; } slong dfs(int v, slong f) { if(v == T or f == 0) return f; slong r = 0; for(int &e_id = L[v]; e_id < SIZE(G[v]); ++e_id) { edge &e = G[v][e_id]; if(D[v]+1 != D[e.u] or e.c == e.f) { continue; } slong c = dfs(e.u, min(f-r, e.c - e.f)); e.f += c; G[e.u][e.p].f -= c; r += c; if(r == f) break; } return r; } slong flow() { slong result = 0; while(bfs()) { CLEAR(L); result += dfs(S, 10000000000000000LL); } return result; } } int N, M; const int MAXN = 111; int P[MAXN], K[MAXN], C[MAXN]; void read_data() { scanf("%d %d", &N, &M); FOR(i,1,N) { scanf("%d %d %d", &P[i], &K[i], &C[i]); } } void solve() { MaxFlow::clear(); vector<int> ts; int total = 0; FOR(i,1,N) { ts.PB(P[i]); ts.PB(K[i]); total += C[i]; } sort(ALL(ts)); int cur_node = N + 10; int source = N + 1, sink = N + 2; MaxFlow::S = source; MaxFlow::T = sink; FOR(i,1,N) { MaxFlow::add_edge(i, sink, C[i]); } FORW(i,1,SIZE(ts)) { int t = ts[i] - ts[i-1]; if(t <= 0) continue; int cnt = 0; // how many processes can we run in parallel FOR(j,1,N) { int overlap = min(ts[i],K[j]) - max(ts[i-1],P[j]); if(P[j] <= ts[i-1] && ts[i] <= K[j]) { MaxFlow::add_edge(cur_node, j, t); cnt++; } } MaxFlow::add_edge(source, cur_node, t*M); cur_node++; } int ans = MaxFlow::flow(); if(ans == total) { printf("TAK\n"); } else { printf("NIE\n"); } } int main() { read_data(); solve(); } |