#include <bits/stdc++.h> using namespace std; #define PB push_back #define FORE(i, t) for(__typeof(t.begin())i=t.begin();i!=t.end();++i) #define SZ(x) int((x).size()) #define REP(i, n) for(int i=0,_=(n);i<_;++i) #define FOR(i, a, b) for(int i=(a),_=(b);i<=_;++i) #define FORD(i, a, b) for(int i=(a),_=(b);i>=_;--i) #ifdef DEBUG #define deb(x) (cerr << x) #else #define deb(x) #endif typedef long long ll; typedef vector<int> vi; typedef pair<int, int> pii; const int INF = 1e9 + 9; const int MX = 103; // Przeplyw push-relabel struct Edge { int to, capacity, flow; Edge *rev; Edge(int to, int capacity, int flow = 0): to(to), capacity(capacity), flow(flow) {} }; struct Vertex { int excess, height; list<Edge> adj; list<Edge>::iterator cur; Vertex(): excess(0), height(0), cur(adj.begin()) {} }; struct PushRelabelMaxFlow { int number_of_vertices, source, sink; vector<Vertex> V; PushRelabelMaxFlow(int number_of_vertices, int source, int sink): number_of_vertices(number_of_vertices), source(source), sink(sink), V(number_of_vertices) { V[source].height = number_of_vertices; } void add_edge(int from, int to, int forward_capacity = 0, int backward_capacity = 0) { V[from].adj.push_front(Edge(to, forward_capacity)); V[to].adj.push_front(Edge(from, backward_capacity)); V[from].adj.front().rev = &V[to].adj.front(); V[to].adj.front().rev = &V[from].adj.front(); } inline bool inside(int x) { return x != source && x != sink; } void push(int x, Edge &e) { int w = min(V[x].excess, e.capacity - e.flow); V[x].excess -= w; V[e.to].excess += w; e.flow += w; e.rev->flow = -e.flow; } void lift(int x) { int mn = INF; FORE(it, V[x].adj) { if(it->capacity > it->flow) { mn = min(mn, V[it->to].height); } } V[x].height = 1 + mn; } void discharge(int x) { while (V[x].excess > 0) { list<Edge>::iterator &y = V[x].cur; if (y == V[x].adj.end()) { lift(x); y = V[x].adj.begin(); } else if((y->capacity > y->flow) && (V[x].height == V[y->to].height + 1)) { push(x, *y); } else { ++y; } } } int compute_max_flow() { FORE(it, V[source].adj) { it->flow = it->capacity; it->rev->flow = -it->capacity; V[it->to].excess += it->capacity; V[source].excess -= it->capacity; } list<int> l; REP (i, number_of_vertices) { if (inside(i)) { l.PB(i); } } FORE(it, l) { int old_height = V[*it].height; discharge(*it); if(V[*it].height > old_height) { int x = *it; l.erase(it); l.push_front(x); it = l.begin(); } } return V[sink].excess; } }; int n, m; int a[MX], b[MX], duration[MX]; bool is_scheduling_possible() { cin >> n >> m; set<int> endpoints_set; int sum_of_durations = 0; REP (i, n) { cin >> a[i] >> b[i] >> duration[i]; sum_of_durations += duration[i]; endpoints_set.insert(a[i]); endpoints_set.insert(b[i]); } vi endpoints(endpoints_set.begin(), endpoints_set.end()); int number_of_vertices = 1 + n + (SZ(endpoints) - 1) + 1; int source = 0; int sink = number_of_vertices - 1; PushRelabelMaxFlow graph(number_of_vertices, source, sink); int ranges_first_vertex = 1 + n; REP (i, n) { int vertex = i + 1; graph.add_edge(source, vertex, duration[i]); REP (j, SZ(endpoints) - 1) { int start = endpoints[j]; int end = endpoints[j + 1]; if (start >= a[i] && end <= b[i]) { int range_vertex = ranges_first_vertex + j; graph.add_edge(vertex, range_vertex, end - start); } } } REP (j, SZ(endpoints) - 1) { int start = endpoints[j]; int end = endpoints[j + 1]; int range_vertex = ranges_first_vertex + j; graph.add_edge(range_vertex, sink, (end - start) * m); } int max_flow = graph.compute_max_flow(); return max_flow >= sum_of_durations; } void inline one() { cout << (is_scheduling_possible() ? "TAK" : "NIE") << "\n"; } int main() { ios::sync_with_stdio(false); //int z; cin >> z; while(z--) one(); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | #include <bits/stdc++.h> using namespace std; #define PB push_back #define FORE(i, t) for(__typeof(t.begin())i=t.begin();i!=t.end();++i) #define SZ(x) int((x).size()) #define REP(i, n) for(int i=0,_=(n);i<_;++i) #define FOR(i, a, b) for(int i=(a),_=(b);i<=_;++i) #define FORD(i, a, b) for(int i=(a),_=(b);i>=_;--i) #ifdef DEBUG #define deb(x) (cerr << x) #else #define deb(x) #endif typedef long long ll; typedef vector<int> vi; typedef pair<int, int> pii; const int INF = 1e9 + 9; const int MX = 103; // Przeplyw push-relabel struct Edge { int to, capacity, flow; Edge *rev; Edge(int to, int capacity, int flow = 0): to(to), capacity(capacity), flow(flow) {} }; struct Vertex { int excess, height; list<Edge> adj; list<Edge>::iterator cur; Vertex(): excess(0), height(0), cur(adj.begin()) {} }; struct PushRelabelMaxFlow { int number_of_vertices, source, sink; vector<Vertex> V; PushRelabelMaxFlow(int number_of_vertices, int source, int sink): number_of_vertices(number_of_vertices), source(source), sink(sink), V(number_of_vertices) { V[source].height = number_of_vertices; } void add_edge(int from, int to, int forward_capacity = 0, int backward_capacity = 0) { V[from].adj.push_front(Edge(to, forward_capacity)); V[to].adj.push_front(Edge(from, backward_capacity)); V[from].adj.front().rev = &V[to].adj.front(); V[to].adj.front().rev = &V[from].adj.front(); } inline bool inside(int x) { return x != source && x != sink; } void push(int x, Edge &e) { int w = min(V[x].excess, e.capacity - e.flow); V[x].excess -= w; V[e.to].excess += w; e.flow += w; e.rev->flow = -e.flow; } void lift(int x) { int mn = INF; FORE(it, V[x].adj) { if(it->capacity > it->flow) { mn = min(mn, V[it->to].height); } } V[x].height = 1 + mn; } void discharge(int x) { while (V[x].excess > 0) { list<Edge>::iterator &y = V[x].cur; if (y == V[x].adj.end()) { lift(x); y = V[x].adj.begin(); } else if((y->capacity > y->flow) && (V[x].height == V[y->to].height + 1)) { push(x, *y); } else { ++y; } } } int compute_max_flow() { FORE(it, V[source].adj) { it->flow = it->capacity; it->rev->flow = -it->capacity; V[it->to].excess += it->capacity; V[source].excess -= it->capacity; } list<int> l; REP (i, number_of_vertices) { if (inside(i)) { l.PB(i); } } FORE(it, l) { int old_height = V[*it].height; discharge(*it); if(V[*it].height > old_height) { int x = *it; l.erase(it); l.push_front(x); it = l.begin(); } } return V[sink].excess; } }; int n, m; int a[MX], b[MX], duration[MX]; bool is_scheduling_possible() { cin >> n >> m; set<int> endpoints_set; int sum_of_durations = 0; REP (i, n) { cin >> a[i] >> b[i] >> duration[i]; sum_of_durations += duration[i]; endpoints_set.insert(a[i]); endpoints_set.insert(b[i]); } vi endpoints(endpoints_set.begin(), endpoints_set.end()); int number_of_vertices = 1 + n + (SZ(endpoints) - 1) + 1; int source = 0; int sink = number_of_vertices - 1; PushRelabelMaxFlow graph(number_of_vertices, source, sink); int ranges_first_vertex = 1 + n; REP (i, n) { int vertex = i + 1; graph.add_edge(source, vertex, duration[i]); REP (j, SZ(endpoints) - 1) { int start = endpoints[j]; int end = endpoints[j + 1]; if (start >= a[i] && end <= b[i]) { int range_vertex = ranges_first_vertex + j; graph.add_edge(vertex, range_vertex, end - start); } } } REP (j, SZ(endpoints) - 1) { int start = endpoints[j]; int end = endpoints[j + 1]; int range_vertex = ranges_first_vertex + j; graph.add_edge(range_vertex, sink, (end - start) * m); } int max_flow = graph.compute_max_flow(); return max_flow >= sum_of_durations; } void inline one() { cout << (is_scheduling_possible() ? "TAK" : "NIE") << "\n"; } int main() { ios::sync_with_stdio(false); //int z; cin >> z; while(z--) one(); } |