//============================================================================ // Name : sze.cpp // Author : piotr // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //============================================================================ //---------------max flow Edmonds-Karp algorithm by George Stoyanov #include<cstdio> #include<cstdio> #include<queue> #include<cstring> #include<vector> #include<iostream> #include <set> #define MAX_NODES 330 // the maximum number of nodes in the graph #define INF 2147483646 // represents infity #define UNINITIALIZED -1 // value for node with no parent using namespace std; // represents the capacities of the edges int capacities[MAX_NODES][MAX_NODES]; // shows how much flow has passed through an edge int flowPassed[MAX_NODES][MAX_NODES]; // represents the graph. The graph must contain the negative edges too! vector<int> graph[MAX_NODES]; // shows the parents of the nodes of the path built by the BFS int parentsList[MAX_NODES]; // shows the maximum flow to a node in the path built by the BFS int currentPathCapacity[MAX_NODES]; int bfs(int startNode, int endNode) { memset(parentsList, UNINITIALIZED, sizeof(parentsList)); memset(currentPathCapacity, 0, sizeof(currentPathCapacity)); queue<int> q; q.push(startNode); parentsList[startNode]=-2; currentPathCapacity[startNode]=INF; while(!q.empty()) { int currentNode = q.front(); q.pop(); for(int i=0; i<graph[currentNode].size(); i++) { int to = graph[currentNode][i]; if(parentsList[to] == UNINITIALIZED) { if(capacities[currentNode][to] - flowPassed[currentNode][to] > 0) { // we update the parent of the future node to be the current node parentsList[to] = currentNode; // we check which is the minimum residual edge capacity so far currentPathCapacity[to] = min(currentPathCapacity[currentNode], capacities[currentNode][to] - flowPassed[currentNode][to]); // if we have reached the end node the bfs should terminate if(to == endNode) return currentPathCapacity[endNode]; // we add our future node to the queue q.push(to); } } } } return 0; } int edmondsKarp(int startNode, int endNode) { int maxFlow=0; while(true) { // we find an augmented path and the maximum flow corresponding to it int flow=bfs(startNode, endNode); // if we can't find anymore paths the flow will be 0 if(flow==0) { break; } maxFlow +=flow; int currentNode=endNode; // we update the passed flow matrix while(currentNode != startNode) { int previousNode = parentsList[currentNode]; flowPassed[previousNode][currentNode] += flow; flowPassed[currentNode][previousNode] -= flow; currentNode=previousNode; } } return maxFlow; } //--------------------------------------------------------- int main() { int n,m; cin >> n >> m; int sumaCzasow=0; int p[n+1],k[n+1],c[n+1]; std::set <int> przedzialy; for (int i = 1; i <= n; i++) { cin >> p[i] >> k[i] >>c[i]; przedzialy.insert(p[i]); przedzialy.insert(k[i]); sumaCzasow+=c[i]; } int liczbaPrzedzialow = przedzialy.size(); int nodesCount, edgesCount; int source, sink; source = 0; sink = n + liczbaPrzedzialow ; /* //--------------------------------------print----------- cout << n << " " << m << endl; for (int i = 1; i <= n; i++) { cout << p[i] << " "<< k[i] << " " << c[i] <<endl; } cout << przedzialy.size() << endl; int temp=0; /* while (!przedzialy.empty()) { temp=*przedzialy.begin(); std::cout << ' ' << temp; przedzialy.erase(przedzialy.begin()); } cout << endl; cout << przedzialy.size(); */ //------------------------------------------ // przydzielenie zadan do source for(int i = 1; i<=n;i++) { int from, to, capacity; from = 0; to = i; capacity = c[i]; // cout << from << " " << to << " " << capacity << endl; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); } // dodanie edge int poczatekPrzed = *przedzialy.begin(); int koniecPrzed; int dlugoscPrzed; przedzialy.erase(przedzialy.begin()); for (int i = 1; i <= liczbaPrzedzialow - 1; i++) { int from, to, capacity; koniecPrzed = *przedzialy.begin(); dlugoscPrzed = koniecPrzed - poczatekPrzed; //----------------- dodanie sinku from = n + i; to = sink; capacity = dlugoscPrzed * m; //cout << from << " " << to << " " << capacity << endl; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); //--------------------------------- for( int j = 1; j <= n ;j++) { if(p[j] <= poczatekPrzed && k[j] >= koniecPrzed) { //----------------- dodanie edge from = j; to = n+i; capacity = dlugoscPrzed; // cout << from << " " << to << " " << capacity << endl; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); //--------------------------------- } } poczatekPrzed = koniecPrzed; przedzialy.erase(przedzialy.begin()); } // cin>>nodesCount>>edgesCount; // cin>>source>>sink; /* for(int edge=0; edge<edgesCount; edge++) { int from, to, capacity; cin>>from>>to>>capacity; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); } */ int maxFlow = edmondsKarp(source, sink); // cout<<maxFlow<<endl; // cout<< sumaCzasow<< endl; if (sumaCzasow == maxFlow) { cout << "TAK" << endl; } else cout << "NIE" << endl; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | //============================================================================ // Name : sze.cpp // Author : piotr // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //============================================================================ //---------------max flow Edmonds-Karp algorithm by George Stoyanov #include<cstdio> #include<cstdio> #include<queue> #include<cstring> #include<vector> #include<iostream> #include <set> #define MAX_NODES 330 // the maximum number of nodes in the graph #define INF 2147483646 // represents infity #define UNINITIALIZED -1 // value for node with no parent using namespace std; // represents the capacities of the edges int capacities[MAX_NODES][MAX_NODES]; // shows how much flow has passed through an edge int flowPassed[MAX_NODES][MAX_NODES]; // represents the graph. The graph must contain the negative edges too! vector<int> graph[MAX_NODES]; // shows the parents of the nodes of the path built by the BFS int parentsList[MAX_NODES]; // shows the maximum flow to a node in the path built by the BFS int currentPathCapacity[MAX_NODES]; int bfs(int startNode, int endNode) { memset(parentsList, UNINITIALIZED, sizeof(parentsList)); memset(currentPathCapacity, 0, sizeof(currentPathCapacity)); queue<int> q; q.push(startNode); parentsList[startNode]=-2; currentPathCapacity[startNode]=INF; while(!q.empty()) { int currentNode = q.front(); q.pop(); for(int i=0; i<graph[currentNode].size(); i++) { int to = graph[currentNode][i]; if(parentsList[to] == UNINITIALIZED) { if(capacities[currentNode][to] - flowPassed[currentNode][to] > 0) { // we update the parent of the future node to be the current node parentsList[to] = currentNode; // we check which is the minimum residual edge capacity so far currentPathCapacity[to] = min(currentPathCapacity[currentNode], capacities[currentNode][to] - flowPassed[currentNode][to]); // if we have reached the end node the bfs should terminate if(to == endNode) return currentPathCapacity[endNode]; // we add our future node to the queue q.push(to); } } } } return 0; } int edmondsKarp(int startNode, int endNode) { int maxFlow=0; while(true) { // we find an augmented path and the maximum flow corresponding to it int flow=bfs(startNode, endNode); // if we can't find anymore paths the flow will be 0 if(flow==0) { break; } maxFlow +=flow; int currentNode=endNode; // we update the passed flow matrix while(currentNode != startNode) { int previousNode = parentsList[currentNode]; flowPassed[previousNode][currentNode] += flow; flowPassed[currentNode][previousNode] -= flow; currentNode=previousNode; } } return maxFlow; } //--------------------------------------------------------- int main() { int n,m; cin >> n >> m; int sumaCzasow=0; int p[n+1],k[n+1],c[n+1]; std::set <int> przedzialy; for (int i = 1; i <= n; i++) { cin >> p[i] >> k[i] >>c[i]; przedzialy.insert(p[i]); przedzialy.insert(k[i]); sumaCzasow+=c[i]; } int liczbaPrzedzialow = przedzialy.size(); int nodesCount, edgesCount; int source, sink; source = 0; sink = n + liczbaPrzedzialow ; /* //--------------------------------------print----------- cout << n << " " << m << endl; for (int i = 1; i <= n; i++) { cout << p[i] << " "<< k[i] << " " << c[i] <<endl; } cout << przedzialy.size() << endl; int temp=0; /* while (!przedzialy.empty()) { temp=*przedzialy.begin(); std::cout << ' ' << temp; przedzialy.erase(przedzialy.begin()); } cout << endl; cout << przedzialy.size(); */ //------------------------------------------ // przydzielenie zadan do source for(int i = 1; i<=n;i++) { int from, to, capacity; from = 0; to = i; capacity = c[i]; // cout << from << " " << to << " " << capacity << endl; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); } // dodanie edge int poczatekPrzed = *przedzialy.begin(); int koniecPrzed; int dlugoscPrzed; przedzialy.erase(przedzialy.begin()); for (int i = 1; i <= liczbaPrzedzialow - 1; i++) { int from, to, capacity; koniecPrzed = *przedzialy.begin(); dlugoscPrzed = koniecPrzed - poczatekPrzed; //----------------- dodanie sinku from = n + i; to = sink; capacity = dlugoscPrzed * m; //cout << from << " " << to << " " << capacity << endl; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); //--------------------------------- for( int j = 1; j <= n ;j++) { if(p[j] <= poczatekPrzed && k[j] >= koniecPrzed) { //----------------- dodanie edge from = j; to = n+i; capacity = dlugoscPrzed; // cout << from << " " << to << " " << capacity << endl; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); //--------------------------------- } } poczatekPrzed = koniecPrzed; przedzialy.erase(przedzialy.begin()); } // cin>>nodesCount>>edgesCount; // cin>>source>>sink; /* for(int edge=0; edge<edgesCount; edge++) { int from, to, capacity; cin>>from>>to>>capacity; capacities[from][to]=capacity; graph[from].push_back(to); //adding the negative edge graph[to].push_back(from); } */ int maxFlow = edmondsKarp(source, sink); // cout<<maxFlow<<endl; // cout<< sumaCzasow<< endl; if (sumaCzasow == maxFlow) { cout << "TAK" << endl; } else cout << "NIE" << endl; return 0; } |