#include <cstdio> #include <climits> #include <algorithm> #include <vector> #include <set> using namespace std; #define DBG(X) struct flow_graph { int MAX_V, E, s, t; int *cap, *to, *next, *last; bool *visited; flow_graph(int V, int MAX_E) { MAX_V = V; E = 0; cap = new int[2 * MAX_E], to = new int[2 * MAX_E], next = new int[2 * MAX_E]; last = new int[MAX_V], visited = new bool[MAX_V]; fill(last, last + MAX_V, -1); } void clear() { fill(last, last + MAX_V, -1); E = 0; } void add_edge(int u, int v, int uv, int vu = 0) { to[E] = v, cap[E] = uv, next[E] = last[u]; last[u] = E++; to[E] = u, cap[E] = vu, next[E] = last[v]; last[v] = E++; DBG(printf("Add edge %d->%d cap: %d\n", u, v, uv)); } int dfs(int v, int f) { if (v == t || f <= 0) return f; if (visited[v]) return 0; visited[v] = true; for (int e = last[v]; e != -1; e = next[e]) { int ret = dfs(to[e], min(f, cap[e])); if (ret>0) { cap[e] -= ret; cap[e ^ 1] += ret; return ret; } } return 0; } int max_flow(int source, int sink) { s = source, t = sink; int f = 0, x; while (true) { fill(visited, visited + MAX_V, false); x = dfs(s, INT_MAX); if (x == 0) break; f += x; } return f; } }; typedef vector<int> VI; typedef vector<VI> VVI; const int INF = 1000000000; struct MaxFlow { int N; VVI cap, flow; VI dad, Q; MaxFlow(int N) : N(N), cap(N, VI(N)), flow(N, VI(N)), dad(N), Q(N) {} void AddEdge(int from, int to, int cap) { this->cap[from][to] += cap; } void add_edge(int from, int to, int cap) { AddEdge(from, to, cap); } int BlockingFlow(int s, int t) { fill(dad.begin(), dad.end(), -1); dad[s] = -2; int head = 0, tail = 0; Q[tail++] = s; while (head < tail) { int x = Q[head++]; for (int i = 0; i < N; i++) { if (dad[i] == -1 && cap[x][i] - flow[x][i] > 0) { dad[i] = x; Q[tail++] = i; } } } if (dad[t] == -1) return 0; int totflow = 0; for (int i = 0; i < N; i++) { if (dad[i] == -1) continue; int amt = cap[i][t] - flow[i][t]; for (int j = i; amt && j != s; j = dad[j]) amt = min(amt, cap[dad[j]][j] - flow[dad[j]][j]); if (amt == 0) continue; flow[i][t] += amt; flow[t][i] -= amt; for (int j = i; j != s; j = dad[j]) { flow[dad[j]][j] += amt; flow[j][dad[j]] -= amt; } totflow += amt; } return totflow; } int GetMaxFlow(int source, int sink) { int totflow = 0; while (int flow = BlockingFlow(source, sink)) totflow += flow; return totflow; } int max_flow(int source, int sink) { return GetMaxFlow(source, sink); } }; int czas_trwania_wszystkich_zadan = 0; vector<pair<int, pair<int, int> > > jobs; set<int> points; vector<pair<int, int> > intervals; flow_graph* G_max_flow_first_impl; MaxFlow * G_max_flow_second_impl; void init_graph(int n) { //G_max_flow_first_impl = new flow_graph(n, n*n); G_max_flow_second_impl = new MaxFlow(n); } void add_edge(int u, int v, int cap) { if (G_max_flow_first_impl) { G_max_flow_first_impl->add_edge(u, v, cap); } else { G_max_flow_second_impl->add_edge(u, v, cap); } } int get_max_flow(int source, int sink) { if (G_max_flow_first_impl) { return G_max_flow_first_impl->max_flow(source, sink); } else { return G_max_flow_second_impl->max_flow(source, sink); } } int main() { int n, m; scanf("%d%d", &n, &m); for (int i = 0; i < n; i++) { int poczatek, koniec, dlugosc; scanf("%d%d%d", &poczatek, &koniec, &dlugosc); jobs.push_back(make_pair(dlugosc, make_pair(poczatek, koniec))); czas_trwania_wszystkich_zadan += dlugosc; points.insert(poczatek); points.insert(koniec); } int last_point = 0; for (set<int>::iterator it = points.begin(); it != points.end(); it++) { int p = *it; if (p != last_point) { intervals.push_back(make_pair(last_point, p)); last_point = p; } } #ifdef K3_DEBUG printf("Intervals:\n"); for (int i = 0; i < intervals.size(); i++) { printf("[%d, %d),", intervals[i].first, intervals[i].second); } printf("\n"); printf("Dlugosc wszystkich zadan: %d\n", czas_trwania_wszystkich_zadan); #endif // wierzchołoek 0 - // layer 1 - wierzcholki reprezentujace Zadania // layer 2 - wierzcholki reprezentujace przedzialy // vierzcholek ostatni // razem: 1 + jobs.size() + intervals.size() + 1 int graph_n = 1 + jobs.size() + intervals.size() + 1; int Sv = 0, Tv = graph_n - 1; //flow_graph G(graph_n, graph_n * graph_n); //G.clear(); init_graph(graph_n); for (int i = 0; i < n; i++) { int release_date = jobs[i].second.first; int due_date = jobs[i].second.second; int dlugosc_zadania = jobs[i].first; int jv = i + 1; DBG(printf("Job %d: relase %d due %d, dlugosc %d, jv=%d\n", i, release_date, due_date, dlugosc_zadania, jv)); add_edge(Sv, jv, dlugosc_zadania); for (int k = 0; k < intervals.size(); k++) { int b = intervals[k].first; int e = intervals[k].second; int interval_v = n + 1 + k; int interval_len = e - b; if (release_date <= b && e <= due_date) { DBG(printf("Node->Interval edge [%d, %d) interval_len=%d cap: %d\n", b, e, interval_len, interval_len)); add_edge(jv, interval_v, interval_len); } DBG(printf("Interval->Target edge %d -> %d cap; %d\n", interval_v, Tv, m * interval_len)); } } for (int k = 0; k < intervals.size(); k++) { int interval_v = n + 1 + k; int b = intervals[k].first; int e = intervals[k].second; int interval_len = e - b; add_edge(interval_v, Tv, m * interval_len); } int max_flow_capacity = get_max_flow(Sv, Tv); DBG(printf("%d\n", max_flow_capacity)); printf((max_flow_capacity >= czas_trwania_wszystkich_zadan) ? "TAK" : "NIE"); return 0; } /* 3 2 3 8 3 2 5 2 3 7 3 */
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | #include <cstdio> #include <climits> #include <algorithm> #include <vector> #include <set> using namespace std; #define DBG(X) struct flow_graph { int MAX_V, E, s, t; int *cap, *to, *next, *last; bool *visited; flow_graph(int V, int MAX_E) { MAX_V = V; E = 0; cap = new int[2 * MAX_E], to = new int[2 * MAX_E], next = new int[2 * MAX_E]; last = new int[MAX_V], visited = new bool[MAX_V]; fill(last, last + MAX_V, -1); } void clear() { fill(last, last + MAX_V, -1); E = 0; } void add_edge(int u, int v, int uv, int vu = 0) { to[E] = v, cap[E] = uv, next[E] = last[u]; last[u] = E++; to[E] = u, cap[E] = vu, next[E] = last[v]; last[v] = E++; DBG(printf("Add edge %d->%d cap: %d\n", u, v, uv)); } int dfs(int v, int f) { if (v == t || f <= 0) return f; if (visited[v]) return 0; visited[v] = true; for (int e = last[v]; e != -1; e = next[e]) { int ret = dfs(to[e], min(f, cap[e])); if (ret>0) { cap[e] -= ret; cap[e ^ 1] += ret; return ret; } } return 0; } int max_flow(int source, int sink) { s = source, t = sink; int f = 0, x; while (true) { fill(visited, visited + MAX_V, false); x = dfs(s, INT_MAX); if (x == 0) break; f += x; } return f; } }; typedef vector<int> VI; typedef vector<VI> VVI; const int INF = 1000000000; struct MaxFlow { int N; VVI cap, flow; VI dad, Q; MaxFlow(int N) : N(N), cap(N, VI(N)), flow(N, VI(N)), dad(N), Q(N) {} void AddEdge(int from, int to, int cap) { this->cap[from][to] += cap; } void add_edge(int from, int to, int cap) { AddEdge(from, to, cap); } int BlockingFlow(int s, int t) { fill(dad.begin(), dad.end(), -1); dad[s] = -2; int head = 0, tail = 0; Q[tail++] = s; while (head < tail) { int x = Q[head++]; for (int i = 0; i < N; i++) { if (dad[i] == -1 && cap[x][i] - flow[x][i] > 0) { dad[i] = x; Q[tail++] = i; } } } if (dad[t] == -1) return 0; int totflow = 0; for (int i = 0; i < N; i++) { if (dad[i] == -1) continue; int amt = cap[i][t] - flow[i][t]; for (int j = i; amt && j != s; j = dad[j]) amt = min(amt, cap[dad[j]][j] - flow[dad[j]][j]); if (amt == 0) continue; flow[i][t] += amt; flow[t][i] -= amt; for (int j = i; j != s; j = dad[j]) { flow[dad[j]][j] += amt; flow[j][dad[j]] -= amt; } totflow += amt; } return totflow; } int GetMaxFlow(int source, int sink) { int totflow = 0; while (int flow = BlockingFlow(source, sink)) totflow += flow; return totflow; } int max_flow(int source, int sink) { return GetMaxFlow(source, sink); } }; int czas_trwania_wszystkich_zadan = 0; vector<pair<int, pair<int, int> > > jobs; set<int> points; vector<pair<int, int> > intervals; flow_graph* G_max_flow_first_impl; MaxFlow * G_max_flow_second_impl; void init_graph(int n) { //G_max_flow_first_impl = new flow_graph(n, n*n); G_max_flow_second_impl = new MaxFlow(n); } void add_edge(int u, int v, int cap) { if (G_max_flow_first_impl) { G_max_flow_first_impl->add_edge(u, v, cap); } else { G_max_flow_second_impl->add_edge(u, v, cap); } } int get_max_flow(int source, int sink) { if (G_max_flow_first_impl) { return G_max_flow_first_impl->max_flow(source, sink); } else { return G_max_flow_second_impl->max_flow(source, sink); } } int main() { int n, m; scanf("%d%d", &n, &m); for (int i = 0; i < n; i++) { int poczatek, koniec, dlugosc; scanf("%d%d%d", &poczatek, &koniec, &dlugosc); jobs.push_back(make_pair(dlugosc, make_pair(poczatek, koniec))); czas_trwania_wszystkich_zadan += dlugosc; points.insert(poczatek); points.insert(koniec); } int last_point = 0; for (set<int>::iterator it = points.begin(); it != points.end(); it++) { int p = *it; if (p != last_point) { intervals.push_back(make_pair(last_point, p)); last_point = p; } } #ifdef K3_DEBUG printf("Intervals:\n"); for (int i = 0; i < intervals.size(); i++) { printf("[%d, %d),", intervals[i].first, intervals[i].second); } printf("\n"); printf("Dlugosc wszystkich zadan: %d\n", czas_trwania_wszystkich_zadan); #endif // wierzchołoek 0 - // layer 1 - wierzcholki reprezentujace Zadania // layer 2 - wierzcholki reprezentujace przedzialy // vierzcholek ostatni // razem: 1 + jobs.size() + intervals.size() + 1 int graph_n = 1 + jobs.size() + intervals.size() + 1; int Sv = 0, Tv = graph_n - 1; //flow_graph G(graph_n, graph_n * graph_n); //G.clear(); init_graph(graph_n); for (int i = 0; i < n; i++) { int release_date = jobs[i].second.first; int due_date = jobs[i].second.second; int dlugosc_zadania = jobs[i].first; int jv = i + 1; DBG(printf("Job %d: relase %d due %d, dlugosc %d, jv=%d\n", i, release_date, due_date, dlugosc_zadania, jv)); add_edge(Sv, jv, dlugosc_zadania); for (int k = 0; k < intervals.size(); k++) { int b = intervals[k].first; int e = intervals[k].second; int interval_v = n + 1 + k; int interval_len = e - b; if (release_date <= b && e <= due_date) { DBG(printf("Node->Interval edge [%d, %d) interval_len=%d cap: %d\n", b, e, interval_len, interval_len)); add_edge(jv, interval_v, interval_len); } DBG(printf("Interval->Target edge %d -> %d cap; %d\n", interval_v, Tv, m * interval_len)); } } for (int k = 0; k < intervals.size(); k++) { int interval_v = n + 1 + k; int b = intervals[k].first; int e = intervals[k].second; int interval_len = e - b; add_edge(interval_v, Tv, m * interval_len); } int max_flow_capacity = get_max_flow(Sv, Tv); DBG(printf("%d\n", max_flow_capacity)); printf((max_flow_capacity >= czas_trwania_wszystkich_zadan) ? "TAK" : "NIE"); return 0; } /* 3 2 3 8 3 2 5 2 3 7 3 */ |