#include <cstdio> #include <cstdlib> #include <iostream> #include <fstream> #include <sstream> #include <set> #include <map> #include <vector> #include <list> #include <algorithm> #include <cstring> #include <cmath> #include <string> #include <queue> #include <bitset> //UWAGA - w czasie kompilacji musi byc znany rozmiar wektora - nie mozna go zmienic #include <cassert> #include <iomanip> //do setprecision #include <ctime> #include <complex> using namespace std; #define FOR(i,b,e) for(int i=(b);i<(e);++i) #define FORQ(i,b,e) for(int i=(b);i<=(e);++i) #define FORD(i,b,e) for(int i=(b)-1;i>=(e);--i) #define REP(x, n) for(int x = 0; x < (n); ++x) #define ST first #define ND second #define PB push_back #define MP make_pair #define LL long long #define ULL unsigned LL #define LD long double const double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342; #define MR 30 // trzymaj id krawedzi przylegajacych do wierzcholka vector < int > g[MR]; bool done[MR*MR]; int cover(int mask, int n) { int res = 0; REP(i,n) if (mask&(1 << i)) { REP(j,g[i].size()) if (!done[g[i][j]]) { res++; done[g[i][j]] = 1; } } return res; } int ile(int mask) { int res = 0; while (mask) { res++; mask &= (mask - 1); } return res; } int main() { int q; scanf("%d", &q); REP(c, q) { int n, k; scanf("%d%d", &n, &k); if (!k) { printf("1\n"); continue; } bool res = 0; // generuj wszystkie grafy vector < pair < int, int > > edges; REP(i, n)FOR(j, i + 1, n) edges.push_back(MP(i, j)); REP(mask, 1 << edges.size()) { int cnt = ile(mask); if (cnt >= k && cnt <= k*(n - 1)) { REP(i, edges.size()) if (mask&(1 << i)) { g[edges[i].first].push_back(i); g[edges[i].second].push_back(i); } int mn = n; REP(maskv, 1 << n) { if (cover(maskv, n) == cnt) mn = min(mn, ile(maskv)); memset(done, 0, edges.size()); } if (mn == k) res = !res; REP(i, n) g[i].clear(); } } printf("%d\n", res); } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 | #include <cstdio> #include <cstdlib> #include <iostream> #include <fstream> #include <sstream> #include <set> #include <map> #include <vector> #include <list> #include <algorithm> #include <cstring> #include <cmath> #include <string> #include <queue> #include <bitset> //UWAGA - w czasie kompilacji musi byc znany rozmiar wektora - nie mozna go zmienic #include <cassert> #include <iomanip> //do setprecision #include <ctime> #include <complex> using namespace std; #define FOR(i,b,e) for(int i=(b);i<(e);++i) #define FORQ(i,b,e) for(int i=(b);i<=(e);++i) #define FORD(i,b,e) for(int i=(b)-1;i>=(e);--i) #define REP(x, n) for(int x = 0; x < (n); ++x) #define ST first #define ND second #define PB push_back #define MP make_pair #define LL long long #define ULL unsigned LL #define LD long double const double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342; #define MR 30 // trzymaj id krawedzi przylegajacych do wierzcholka vector < int > g[MR]; bool done[MR*MR]; int cover(int mask, int n) { int res = 0; REP(i,n) if (mask&(1 << i)) { REP(j,g[i].size()) if (!done[g[i][j]]) { res++; done[g[i][j]] = 1; } } return res; } int ile(int mask) { int res = 0; while (mask) { res++; mask &= (mask - 1); } return res; } int main() { int q; scanf("%d", &q); REP(c, q) { int n, k; scanf("%d%d", &n, &k); if (!k) { printf("1\n"); continue; } bool res = 0; // generuj wszystkie grafy vector < pair < int, int > > edges; REP(i, n)FOR(j, i + 1, n) edges.push_back(MP(i, j)); REP(mask, 1 << edges.size()) { int cnt = ile(mask); if (cnt >= k && cnt <= k*(n - 1)) { REP(i, edges.size()) if (mask&(1 << i)) { g[edges[i].first].push_back(i); g[edges[i].second].push_back(i); } int mn = n; REP(maskv, 1 << n) { if (cover(maskv, n) == cnt) mn = min(mn, ile(maskv)); memset(done, 0, edges.size()); } if (mn == k) res = !res; REP(i, n) g[i].clear(); } } printf("%d\n", res); } return 0; } |