1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <fstream>
#include <sstream>
#include <set>
#include <map>
#include <vector>
#include <list>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <string>
#include <queue>
#include <bitset>		//UWAGA - w czasie kompilacji musi byc znany rozmiar wektora - nie mozna go zmienic
#include <cassert>
#include <iomanip>		//do setprecision
#include <ctime>
#include <complex>
using namespace std;

#define FOR(i,b,e) for(int i=(b);i<(e);++i)
#define FORQ(i,b,e) for(int i=(b);i<=(e);++i)
#define FORD(i,b,e) for(int i=(b)-1;i>=(e);--i)
#define REP(x, n) for(int x = 0; x < (n); ++x)

#define ST first
#define ND second
#define PB push_back
#define MP make_pair
#define LL long long
#define ULL unsigned LL
#define LD long double

const double pi = 3.141592653589793238462643383279502884197169399375105820974944592307816406286208998628034825342;

#define MR 30

// trzymaj id krawedzi przylegajacych do wierzcholka
vector < int > g[MR];

bool done[MR*MR];

int cover(int mask, int n)
{
	int res = 0;
	REP(i,n)
		if (mask&(1 << i))
		{
			REP(j,g[i].size())
				if (!done[g[i][j]])
				{
					res++;
					done[g[i][j]] = 1;
				}
		}

	return res;
}

int ile(int mask)
{
	int res = 0;
	while (mask)
	{
		res++;
		mask &= (mask - 1);
	}

	return res;
}

int main()
{
	int q;
	scanf("%d", &q);
	REP(c, q)
	{
		int n, k;
		scanf("%d%d", &n, &k);

		if (!k)
		{
			printf("1\n");
			continue;
		}

		bool res = 0;

		// generuj wszystkie grafy
		vector < pair < int, int > > edges;
		REP(i, n)FOR(j, i + 1, n)
			edges.push_back(MP(i, j));
		REP(mask, 1 << edges.size())
		{
			int cnt = ile(mask);
			if (cnt >= k && cnt <= k*(n - 1))
			{
				REP(i, edges.size())
					if (mask&(1 << i))
					{
						g[edges[i].first].push_back(i);
						g[edges[i].second].push_back(i);
					}
				int mn = n;
				REP(maskv, 1 << n)
				{
					if (cover(maskv, n) == cnt)
						mn = min(mn, ile(maskv));
					memset(done, 0, edges.size());
				}
				if (mn == k)
					res = !res;
				REP(i, n)
					g[i].clear();
			}
		}

		printf("%d\n", res);
	}
	return 0;
}