#include <bits/stdc++.h> using namespace std; template <typename T> T load() { T r; cin >> r; return r; } template <typename T> vector<T> loadMany(int n) { vector<T> rs(n); generate(rs.begin(), rs.end(), &load<T>); return rs; } struct Graph { Graph(int n):edges(n){} void addEdge1(int a, int b) { edges[a].push_back(b); } int size() const { return (int)edges.size(); } Graph transpose() const { auto t = Graph(size()); for (auto v=0; v<size(); ++v) for (auto u : edges[v]) t.addEdge1(u, v); return t; } vector<vector<int>> edges; }; Graph loadEdges(int n, int m) { auto g = Graph(n); for (auto i=0; i<m; ++i) { auto v = load<int>() - 1; auto u = load<int>() - 1; g.addEdge1(v, u); } return g; } int longestPath(const Graph& graph) { auto dyn = vector<int>(graph.size(), 1); for (auto v=0; v<graph.size(); ++v) for (auto u : graph.edges[v]) dyn[u] = max(dyn[u], dyn[v] + 1); return *max_element(dyn.begin(), dyn.end()); } template <typename T> struct SufMax { SufMax(const vector<T>& xs):sufr(xs){ for (auto i=(int)xs.size()-2; i>=0; --i) sufr[i] = std::max(sufr[i+1], sufr[i]); } const T& max(int i) { return sufr[i]; } vector<T> sufr; }; int solveK1(const vector<bool>& active, int n, const Graph& graph, const Graph& transposed) { auto dynleft = vector<int>(n, 1); for (auto v=0; v<n; ++v) if (active[v]) { for (auto u : graph.edges[v]) if (active[u]) dynleft[u] = max(dynleft[u], dynleft[v] + 1); } else dynleft[v] = 0; auto dynright = vector<int>(n, 1); for (auto v=n-1; v>=0; --v) if (active[v]) { for (auto u : transposed.edges[v]) if (active[u]) dynright[u] = max(dynright[u], dynright[v] + 1); } else dynright[v] = 0; auto onlyl = 0; auto onlyr = SufMax<int>(dynright); auto result = numeric_limits<int>::max(); auto eque = priority_queue<pair<int, int>>(); // (path length, end vertex) for (auto v=0; v<n; ++v) { // remove edges from eque while (not eque.empty() and eque.top().second <= v) eque.pop(); // calculate score auto score = max(eque.empty() ? 0 : eque.top().first, max(onlyl, v+1 < n ? onlyr.max(v+1) : 0)); result = min(result, score); // update onlyl if (active[v]) onlyl = max(onlyl, dynleft[v]); // add edges to eque if (active[v]) for (auto u : graph.edges[v]) if (active[u]) eque.emplace(dynleft[v] + dynright[u], u); } return result; } int recEliminate(int v0, vector<bool>& active, int n, int k, const Graph& graph, const Graph& transposed) { if (k == 1) return solveK1(active, n, graph, transposed); auto result = numeric_limits<int>::max(); for (auto v=v0; v<n; ++v) { active[v] = false; result = min(result, recEliminate(v+1, active, n, k-1, graph, transposed)); active[v] = true; } result = min(result, solveK1(active, n, graph, transposed)); return result; } int solve(int n, int k, const Graph& graph) { if (k == 0) return longestPath(graph); auto transposed = graph.transpose(); auto active = vector<bool>(n, true); return recEliminate(0, active, n, k, graph, transposed); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); auto n = load<int>(); auto m = load<int>(); auto k = load<int>(); auto graph = loadEdges(n, m); auto answer = solve(n, k, graph); cout << answer << '\n'; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | #include <bits/stdc++.h> using namespace std; template <typename T> T load() { T r; cin >> r; return r; } template <typename T> vector<T> loadMany(int n) { vector<T> rs(n); generate(rs.begin(), rs.end(), &load<T>); return rs; } struct Graph { Graph(int n):edges(n){} void addEdge1(int a, int b) { edges[a].push_back(b); } int size() const { return (int)edges.size(); } Graph transpose() const { auto t = Graph(size()); for (auto v=0; v<size(); ++v) for (auto u : edges[v]) t.addEdge1(u, v); return t; } vector<vector<int>> edges; }; Graph loadEdges(int n, int m) { auto g = Graph(n); for (auto i=0; i<m; ++i) { auto v = load<int>() - 1; auto u = load<int>() - 1; g.addEdge1(v, u); } return g; } int longestPath(const Graph& graph) { auto dyn = vector<int>(graph.size(), 1); for (auto v=0; v<graph.size(); ++v) for (auto u : graph.edges[v]) dyn[u] = max(dyn[u], dyn[v] + 1); return *max_element(dyn.begin(), dyn.end()); } template <typename T> struct SufMax { SufMax(const vector<T>& xs):sufr(xs){ for (auto i=(int)xs.size()-2; i>=0; --i) sufr[i] = std::max(sufr[i+1], sufr[i]); } const T& max(int i) { return sufr[i]; } vector<T> sufr; }; int solveK1(const vector<bool>& active, int n, const Graph& graph, const Graph& transposed) { auto dynleft = vector<int>(n, 1); for (auto v=0; v<n; ++v) if (active[v]) { for (auto u : graph.edges[v]) if (active[u]) dynleft[u] = max(dynleft[u], dynleft[v] + 1); } else dynleft[v] = 0; auto dynright = vector<int>(n, 1); for (auto v=n-1; v>=0; --v) if (active[v]) { for (auto u : transposed.edges[v]) if (active[u]) dynright[u] = max(dynright[u], dynright[v] + 1); } else dynright[v] = 0; auto onlyl = 0; auto onlyr = SufMax<int>(dynright); auto result = numeric_limits<int>::max(); auto eque = priority_queue<pair<int, int>>(); // (path length, end vertex) for (auto v=0; v<n; ++v) { // remove edges from eque while (not eque.empty() and eque.top().second <= v) eque.pop(); // calculate score auto score = max(eque.empty() ? 0 : eque.top().first, max(onlyl, v+1 < n ? onlyr.max(v+1) : 0)); result = min(result, score); // update onlyl if (active[v]) onlyl = max(onlyl, dynleft[v]); // add edges to eque if (active[v]) for (auto u : graph.edges[v]) if (active[u]) eque.emplace(dynleft[v] + dynright[u], u); } return result; } int recEliminate(int v0, vector<bool>& active, int n, int k, const Graph& graph, const Graph& transposed) { if (k == 1) return solveK1(active, n, graph, transposed); auto result = numeric_limits<int>::max(); for (auto v=v0; v<n; ++v) { active[v] = false; result = min(result, recEliminate(v+1, active, n, k-1, graph, transposed)); active[v] = true; } result = min(result, solveK1(active, n, graph, transposed)); return result; } int solve(int n, int k, const Graph& graph) { if (k == 0) return longestPath(graph); auto transposed = graph.transpose(); auto active = vector<bool>(n, true); return recEliminate(0, active, n, k, graph, transposed); } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); auto n = load<int>(); auto m = load<int>(); auto k = load<int>(); auto graph = loadEdges(n, m); auto answer = solve(n, k, graph); cout << answer << '\n'; } |