#include<bits/stdc++.h> #define rep(i,k,n) for(ll i= (ll) k;i< (ll) n;i++) #define all(v) (v).begin(), (v).end() #define SZ(v) (ll)((v).size()) #define pb push_back #define ft first #define sd second typedef long long ll; typedef unsigned long long ull; typedef long double ld; const long long INF = 1e18L + 1; const int IINF = 1e9 + 1; using namespace std; template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; } template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while(*sdbg!=',')cerr<<*sdbg++; cerr<<'='<<h<<','; _dbg(sdbg+1, a...); } #ifdef LOCAL #define DBG(...) _dbg(#__VA_ARGS__, __VA_ARGS__) #else #define DBG(...) (__VA_ARGS__) #define cerr if(0)cout #endif typedef long double R; typedef complex<R> C; typedef long long RL; typedef complex<RL> CL; #define x real() #define y imag() const R eps = 1e-16; bool eq(R r1, R r2) { return abs(r1 - r2) < eps; } bool eq(const C& c1,const C& c2) { return eq(c1.x, c2.x) and eq(c1.y, c2.y); } R dot(const C& c1, const C& c2) { return c1.x * c2.x + c1.y * c2.y;} R det(const C& c1, const C& c2) { return c1.x * c2.y - c1.y * c2.x;} RL dot(const CL& c1, const CL& c2) { return c1.x * c2.x + c1.y * c2.y;} RL det(const CL& c1, const CL& c2) { return c1.x * c2.y - c1.y * c2.x;} C to_C(const CL& cl){ return C(cl.x, cl.y);} struct line{ CL nl; RL cl; C n, d; R c; line() = default; line(CL p1, CL p2) :nl{(p2 - p1) * CL(0, 1)}, cl{dot(p1, nl)}, n{to_C(nl) / abs(to_C(nl))}, d{n.y, -n.x}, c{dot(to_C(p1), n)} {} bool operator <(const line& other) const { RL de = det(nl, other.nl); if(de == 0){ return c > other.c; } else { return de > 0; } } C val(R t) const { return c * n + t * d;} R tis(const line& other) const { return (other.c - c * dot(n, other.n)) / dot(d, other.n); } }; ostream& operator <<(ostream& o, const line& l){ return o << l.n << " " << l.c;} C is(const line& a, const line& b) { return a.val(a.tis(b));} namespace hplane{ const int N = 200000; line lns[2 * N + 1]; C poly[2 * N + 1]; int jd1, jd2, ju1, ju2, ans_sz, poly_sz, n = 0; inline int cnt(){ return ju2 + jd2 - ju1 - jd1 + 2; } void add(const line& l){ lns[n++] = l;} void clear(){ n = 0;} bool empty_is(const line& l1, const line& l2) { return det(l1.nl, l2.nl) == 0 and dot(l1.nl, l2.nl) < 0 and l1.c + eps > -l2.c;} bool wrong(const line& l_prev, const line& l_last, const line& l_new) { if(det(l_last.nl, l_new.nl) != 0) { return l_last.tis(l_new) < l_last.tis(l_prev) + eps; } else { return false; } } int cor(int j1, int j2){ sort(lns + j1, lns + j2 + 1); j2 = unique(lns + j1, lns + j2 + 1, [](line& l1, line& l2){ return dot(l1.nl, l2.nl) > 0 and det(l1.nl, l2.nl) == 0;}) - lns - 1; int j = min(j1 + 1, j2); rep(i, j1 + 2, j2 + 1){ j++; while(j >= j1 + 2 and wrong(lns[j - 2], lns[j - 1], lns[i])){ j--; } lns[j] = lns[i]; } return j; } void c_front(int& j1, int& j2, int& j3){ while((j3 - j2) >= 1 and wrong(lns[j1], lns[j2], lns[j2 + 1])) j2++; } void c_back(int& j1, int& j2, int& j3){ while((j2 - j1) >= 1 and wrong(lns[j2 - 1], lns[j2], lns[j3])) j2--; } void solve(){ ju1 = partition(lns, lns + n, [](const line& l){ return det(CL(1, 0), l.nl) > 0 or (l.nl.y == 0 and l.nl.x < 0);}) - lns; ju2 = n - 1; jd1 = 0; jd2 = ju1 - 1; jd2 = cor(jd1, jd2); ju2 = cor(ju1, ju2); int chck = 0; while(chck != cnt() and (jd2 - jd1) >= 0 and (ju2 - ju1) >= 0 and ((jd2 - jd1) >= 1 or (ju2 - ju1) >= 1)){ if(empty_is(lns[jd1], lns[ju2]) or empty_is(lns[ju1], lns[jd2])){ ans_sz = 0; return; } chck = cnt(); c_front(jd2, ju1, ju2); c_back(ju1, ju2, jd1); c_front(ju2, jd1, jd2); c_back(jd1, jd2, ju1); } rep(i, jd1, jd2 + 1){ lns[i - jd1] = lns[i]; } rep(i, ju1, ju2 + 1){ lns[jd2 + 1 - jd1 + i - ju1] = lns[i]; } ans_sz = cnt(); } void get_poly(){ if(ans_sz > 2){ poly_sz = ans_sz; rep(i, 0, ans_sz){ poly[i] = is(lns[i], lns[(i + 1) % ans_sz]); } } else { poly_sz = 0; } } } R triangle_area(C v1, C v2, C v3){ return fabs(det(v2 - v1, v2 - v3)) / 2.0; } const ll M = 100; CL mages[M + 1][2]; int main() { #ifndef LOCAL ios_base::sync_with_stdio(0); cin.tie(0); #endif ll n; cin >> n; rep(i, 0, n){ rep(j, 0, 2){ ll xx, yy; cin >> xx >> yy; mages[i][j] = CL(xx, yy); } } rep(i, 0, n){ rep(ii, 0, 2){ rep(j, 0, n){ if(j != i){ rep(jj, 0, 2){ line ll1(mages[i][ii], mages[j][jj]), ll2(mages[j][jj], mages[i][ii]); for(auto l : {ll1, ll2}){ bool both_off = false; rep(k, 0, n){ if(k != i and k != j){ if(dot(l.nl, mages[k][0]) < l.cl and dot(l.nl, mages[k][1]) < l. cl){ both_off = true; } } } if(!both_off){ hplane::add(l); } } } } } } } hplane::solve(); hplane::get_poly(); R res = 0; rep(i, 1, hplane::poly_sz - 1){ res += triangle_area(hplane::poly[0], hplane::poly[i], hplane::poly[i + 1]); } cout << setprecision(15) << fixed << res << "\n"; return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | #include<bits/stdc++.h> #define rep(i,k,n) for(ll i= (ll) k;i< (ll) n;i++) #define all(v) (v).begin(), (v).end() #define SZ(v) (ll)((v).size()) #define pb push_back #define ft first #define sd second typedef long long ll; typedef unsigned long long ull; typedef long double ld; const long long INF = 1e18L + 1; const int IINF = 1e9 + 1; using namespace std; template<class TH> void _dbg(const char *sdbg, TH h){ cerr<<sdbg<<'='<<h<<endl; } template<class TH, class... TA> void _dbg(const char *sdbg, TH h, TA... a) { while(*sdbg!=',')cerr<<*sdbg++; cerr<<'='<<h<<','; _dbg(sdbg+1, a...); } #ifdef LOCAL #define DBG(...) _dbg(#__VA_ARGS__, __VA_ARGS__) #else #define DBG(...) (__VA_ARGS__) #define cerr if(0)cout #endif typedef long double R; typedef complex<R> C; typedef long long RL; typedef complex<RL> CL; #define x real() #define y imag() const R eps = 1e-16; bool eq(R r1, R r2) { return abs(r1 - r2) < eps; } bool eq(const C& c1,const C& c2) { return eq(c1.x, c2.x) and eq(c1.y, c2.y); } R dot(const C& c1, const C& c2) { return c1.x * c2.x + c1.y * c2.y;} R det(const C& c1, const C& c2) { return c1.x * c2.y - c1.y * c2.x;} RL dot(const CL& c1, const CL& c2) { return c1.x * c2.x + c1.y * c2.y;} RL det(const CL& c1, const CL& c2) { return c1.x * c2.y - c1.y * c2.x;} C to_C(const CL& cl){ return C(cl.x, cl.y);} struct line{ CL nl; RL cl; C n, d; R c; line() = default; line(CL p1, CL p2) :nl{(p2 - p1) * CL(0, 1)}, cl{dot(p1, nl)}, n{to_C(nl) / abs(to_C(nl))}, d{n.y, -n.x}, c{dot(to_C(p1), n)} {} bool operator <(const line& other) const { RL de = det(nl, other.nl); if(de == 0){ return c > other.c; } else { return de > 0; } } C val(R t) const { return c * n + t * d;} R tis(const line& other) const { return (other.c - c * dot(n, other.n)) / dot(d, other.n); } }; ostream& operator <<(ostream& o, const line& l){ return o << l.n << " " << l.c;} C is(const line& a, const line& b) { return a.val(a.tis(b));} namespace hplane{ const int N = 200000; line lns[2 * N + 1]; C poly[2 * N + 1]; int jd1, jd2, ju1, ju2, ans_sz, poly_sz, n = 0; inline int cnt(){ return ju2 + jd2 - ju1 - jd1 + 2; } void add(const line& l){ lns[n++] = l;} void clear(){ n = 0;} bool empty_is(const line& l1, const line& l2) { return det(l1.nl, l2.nl) == 0 and dot(l1.nl, l2.nl) < 0 and l1.c + eps > -l2.c;} bool wrong(const line& l_prev, const line& l_last, const line& l_new) { if(det(l_last.nl, l_new.nl) != 0) { return l_last.tis(l_new) < l_last.tis(l_prev) + eps; } else { return false; } } int cor(int j1, int j2){ sort(lns + j1, lns + j2 + 1); j2 = unique(lns + j1, lns + j2 + 1, [](line& l1, line& l2){ return dot(l1.nl, l2.nl) > 0 and det(l1.nl, l2.nl) == 0;}) - lns - 1; int j = min(j1 + 1, j2); rep(i, j1 + 2, j2 + 1){ j++; while(j >= j1 + 2 and wrong(lns[j - 2], lns[j - 1], lns[i])){ j--; } lns[j] = lns[i]; } return j; } void c_front(int& j1, int& j2, int& j3){ while((j3 - j2) >= 1 and wrong(lns[j1], lns[j2], lns[j2 + 1])) j2++; } void c_back(int& j1, int& j2, int& j3){ while((j2 - j1) >= 1 and wrong(lns[j2 - 1], lns[j2], lns[j3])) j2--; } void solve(){ ju1 = partition(lns, lns + n, [](const line& l){ return det(CL(1, 0), l.nl) > 0 or (l.nl.y == 0 and l.nl.x < 0);}) - lns; ju2 = n - 1; jd1 = 0; jd2 = ju1 - 1; jd2 = cor(jd1, jd2); ju2 = cor(ju1, ju2); int chck = 0; while(chck != cnt() and (jd2 - jd1) >= 0 and (ju2 - ju1) >= 0 and ((jd2 - jd1) >= 1 or (ju2 - ju1) >= 1)){ if(empty_is(lns[jd1], lns[ju2]) or empty_is(lns[ju1], lns[jd2])){ ans_sz = 0; return; } chck = cnt(); c_front(jd2, ju1, ju2); c_back(ju1, ju2, jd1); c_front(ju2, jd1, jd2); c_back(jd1, jd2, ju1); } rep(i, jd1, jd2 + 1){ lns[i - jd1] = lns[i]; } rep(i, ju1, ju2 + 1){ lns[jd2 + 1 - jd1 + i - ju1] = lns[i]; } ans_sz = cnt(); } void get_poly(){ if(ans_sz > 2){ poly_sz = ans_sz; rep(i, 0, ans_sz){ poly[i] = is(lns[i], lns[(i + 1) % ans_sz]); } } else { poly_sz = 0; } } } R triangle_area(C v1, C v2, C v3){ return fabs(det(v2 - v1, v2 - v3)) / 2.0; } const ll M = 100; CL mages[M + 1][2]; int main() { #ifndef LOCAL ios_base::sync_with_stdio(0); cin.tie(0); #endif ll n; cin >> n; rep(i, 0, n){ rep(j, 0, 2){ ll xx, yy; cin >> xx >> yy; mages[i][j] = CL(xx, yy); } } rep(i, 0, n){ rep(ii, 0, 2){ rep(j, 0, n){ if(j != i){ rep(jj, 0, 2){ line ll1(mages[i][ii], mages[j][jj]), ll2(mages[j][jj], mages[i][ii]); for(auto l : {ll1, ll2}){ bool both_off = false; rep(k, 0, n){ if(k != i and k != j){ if(dot(l.nl, mages[k][0]) < l.cl and dot(l.nl, mages[k][1]) < l. cl){ both_off = true; } } } if(!both_off){ hplane::add(l); } } } } } } } hplane::solve(); hplane::get_poly(); R res = 0; rep(i, 1, hplane::poly_sz - 1){ res += triangle_area(hplane::poly[0], hplane::poly[i], hplane::poly[i + 1]); } cout << setprecision(15) << fixed << res << "\n"; return 0; } |