1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
#include <bits/stdc++.h>
#define MP make_pair
#define PB push_back
#define int long long
#define st first
#define nd second
#define rd third
#define FOR(i, a, b) for(int i =(a); i <=(b); ++i)
#define RE(i, n) FOR(i, 1, n)
#define FORD(i, a, b) for(int i = (a); i >= (b); --i)
#define REP(i, n) for(int i = 0;i <(n); ++i)
#define VAR(v, i) __typeof(i) v=(i)
#define FORE(i, c) for(VAR(i, (c).begin()); i != (c).end(); ++i)
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
#define __builtin_ctz __builtin_ctzll
#define __builtin_clz __builtin_clzll
#define __builtin_popcount __builtin_popcountll
using namespace std;
template<typename TH> void _dbg(const char* sdbg, TH h) { cerr<<sdbg<<"="<<h<<"\n"; }
template<typename TH, typename... TA> void _dbg(const char* sdbg, TH h, TA... t) {
  while(*sdbg != ',') { cerr<<*sdbg++; } cerr<<"="<<h<<","; _dbg(sdbg+1, t...);
}
#ifdef LOCAL
#define debug(...) _dbg(#__VA_ARGS__, __VA_ARGS__)
#define debugv(x) {{cerr <<#x <<" = "; FORE(itt, (x)) cerr <<*itt <<", "; cerr <<"\n"; }}
#else
#define debug(...) (__VA_ARGS__)
#define debugv(x)
#define cerr if(0)cout
#endif
#define next ____next
#define prev ____prev
#define left ____left
#define hash ____hash
typedef long long ll;
typedef long double LD;
typedef pair<int, int> PII;
typedef pair<ll, ll> PLL;
typedef vector<int> VI;
typedef vector<VI> VVI;
typedef vector<ll> VLL;
typedef vector<pair<int, int> > VPII;
typedef vector<pair<ll, ll> > VPLL;

template<class C> void mini(C&a4, C b4){a4=min(a4, b4); }
template<class C> void maxi(C&a4, C b4){a4=max(a4, b4); }
template<class T1, class T2>
ostream& operator<< (ostream &out, pair<T1, T2> pair) { return out << "(" << pair.first << ", " << pair.second << ")";}
template<class A, class B, class C> struct Triple { A first; B second; C third;
  bool operator<(const Triple& t) const { if (st != t.st) return st < t.st; if (nd != t.nd) return nd < t.nd; return rd < t.rd; } };
template<class T> void ResizeVec(T&, vector<int>) {}
template<class T> void ResizeVec(vector<T>& vec, vector<int> sz) {
  vec.resize(sz[0]); sz.erase(sz.begin()); if (sz.empty()) { return; }
  for (T& v : vec) { ResizeVec(v, sz); }
}
typedef Triple<int, int, int> TIII;
template<class A, class B, class C>
ostream& operator<< (ostream &out, Triple<A, B, C> t) { return out << "(" << t.st << ", " << t.nd << ", " << t.rd << ")"; }
template<class T> ostream& operator<<(ostream& out, vector<T> vec) { out<<"("; for (auto& v: vec) out<<v<<", "; return out<<")"; }
template<class T> ostream& operator<<(ostream& out, set<T> vec) { out<<"("; for (auto& v: vec) out<<v<<", "; return out<<")"; }
template<class L, class R> ostream& operator<<(ostream& out, map<L, R> vec) { out<<"("; for (auto& v: vec) out<<v<<", "; return out<<")"; }

typedef long double LD;
const LD kEps = 1e-9;
const LD kPi = 2 * acos(0);
LD Sq(LD x) {
  return x * x;
}
struct Point {
  LD x, y;
  Point() {}
  Point(LD a, LD b) : x(a), y(b) {}
  Point(const Point& a) : x(a.x), y(a.y) {}
  void operator=(const Point& a) { x = a.x; y = a.y; }
  Point operator+(const Point& a) const { Point p(x + a.x, y + a.y); return p; }
  Point operator-(const Point& a) const { Point p(x - a.x, y - a.y); return p; }
  Point operator*(LD a) const { Point p(x * a, y * a); return p; }
  Point operator/(LD a) const { assert(abs(a) > kEps); Point p(x / a, y / a); return p; }
  Point& operator+=(const Point& a) { x += a.x; y += a.y; return *this; }
  Point& operator-=(const Point& a) { x -= a.x; y -= a.y; return *this; }
  Point& operator*=(LD a) { x *= a; y *= a; return *this;}
  Point& operator/=(LD a) { assert(abs(a) > kEps); x /= a; y /= a; return *this; }
  
  bool IsZero() const {
    return abs(x) < kEps && abs(y) < kEps;
  }
  bool operator==(const Point& a) const {
    return (*this - a).IsZero();
  }
  LD CrossProd(const Point& a) const {
    return x * a.y - y * a.x;
  }
  LD CrossProd(Point a, Point b) const {
    a -= *this;
    b -= *this;
    return a.CrossProd(b);
  }
  LD DotProd(const Point& a) const {
    return x * a.x + y * a.y;
  }
  LD Norm() const {
    return sqrt(Sq(x) + Sq(y));
  }
  void NormalizeSelf() {
    *this /= Norm();
  }
  Point Normalize() {
    Point res(*this);
    res.NormalizeSelf();
    return res;
  }
  LD Dist(const Point& a) const {
    return (*this - a).Norm();
  }
  LD Angle() const {
    return atan2(y, x);
  }
  void RotateSelf(LD angle) {
    LD c = cos(angle);
    LD s = sin(angle);
    LD nx = x * c - y * s;
    LD ny = y * c + x * s;
    y = ny;
    x = nx;
  }
  Point Rotate(LD angle) const {
    Point res(*this);
    res.RotateSelf(angle);
    return res;
  }
  static bool LexCmp(const Point& a, const Point& b) {
    if (abs(a.x - b.x) > kEps) {
      return a.x < b.x;
    }
    return a.y < b.y;
  }
  LD SqNorm() {
    return x * x + y * y;
  }
  friend ostream& operator<<(ostream& out, Point m);
};

ostream& operator<<(ostream& out, Point p) {
  out << "(" << p.x << ", " << p.y << ")";
  return out;
}

struct Circle {
  Point center;
  LD r;
  Circle(LD x, LD y, LD rad) {
    center = Point(x, y);
    r = rad;
  }
  Circle(const Point& a, LD rad) : center(a), r(rad) {}
  LD Area() const {
    return kPi * Sq(r);
  }
  LD Perimeter() const {
    return 2 * kPi * r;
  }
  LD Diameter() const {
    return 2 * r;
  }
  Point RotateRightMost(LD ang) const {
    return center + Point{r * cos(ang), r * sin(ang)};
  }
  bool operator==(const Circle& c) const {
    return center == c.center && abs(r - c.r) < kEps;
  }
};

struct Line {
  Point p[2];
  bool is_seg;
  Line(Point a, Point b, bool is_seg_ = false) {
    p[0] = a;
    p[1] = b;
    is_seg = is_seg_;
  }
  Line() {
  }
  Point& operator[](int a) {
    return p[a];
  }
  Point NormalVector() {
    Point perp = p[1] - p[0];
    perp.RotateSelf(kPi / 2);
    perp.NormalizeSelf();
    return perp;
  }
  
  // (A, B, C) such that A^2 + B^2 = 1, (A, B) > (0, 0)
  vector<LD> LineEqNormLD() { // seems ok
    LD A = p[1].y - p[0].y;
    LD B = p[0].x - p[1].x;
    LD C = -(A * p[0].x + B * p[0].y);
    assert(abs(A * p[1].x + B * p[1].y + C) < kEps);
    LD norm = sqrt(Sq(A) + Sq(B));
    vector<LD> res{A, B, C};
    for (auto& x : res) { x /= norm; }
    if (A < -kEps || (abs(A) < kEps && B < -kEps)) {
      for (auto& x : res) { x *= -1; }
    }
    return res;
  }
  
  // assumes that coordinates are integers!
  vector<int> LineEqNormInt() { // seems ok
    int A = round(p[1].y - p[0].y);
    int B = round(p[0].x - p[1].x);
    int C = -(A * p[0].x + B * p[0].y);
    int gcd = abs(__gcd(A, __gcd(B, C)));
    vector<int> res{A, B, C};
    for (auto& x : res) { x /= gcd; }
    if (A < 0 || (A == 0 && B < 0)) {
      for (auto& x : res) { x *= -1; }
    }
    return res;
  }
};

struct Utils {
  // 0, 1, 2 or 3 pts. In case of 3 pts it means they are equal
  static vector<Point> InterCircleCircle(Circle a, Circle b) {
    if (a.r + kEps < b.r) {
      swap(a, b);
    }
    if (a == b) {
      return vector<Point>{a.RotateRightMost(0), a.RotateRightMost(2 * kPi / 3),
          a.RotateRightMost(4 * kPi / 3)};
    }
    Point diff = b.center - a.center;
    LD dis = diff.Norm();
    LD ang = diff.Angle();
    LD longest = max(max(a.r, b.r), dis);
    LD per = a.r + b.r + dis;
    if (2 * longest > per + kEps) {
      return vector<Point>();
    }
    if (abs(2 * longest - per) < 2 * kEps) {
      return vector<Point>{a.RotateRightMost(ang)};
    }
    LD ang_dev = acos((Sq(a.r) + Sq(dis) - Sq(b.r)) / (2 * a.r * dis));
    return vector<Point>{a.RotateRightMost(ang - ang_dev), a.RotateRightMost(ang + ang_dev)};
  }
  
  static vector<Point> InterLineLine(Line& a, Line& b) { // working fine
    Point vec_a = a[1] - a[0];
    Point vec_b1 = b[1] - a[0];
    Point vec_b0 = b[0] - a[0]; 
    LD tr_area = vec_b1.CrossProd(vec_b0);
    LD quad_area = vec_b1.CrossProd(vec_a) + vec_a.CrossProd(vec_b0);
    if (abs(quad_area) < kEps) { // parallel or coinciding
      if (PtBelongToLine(b, a[0])) {
        return {a[0], a[1]};
      } else {
        return {};
      }
    }
    return {a[0] + vec_a * (tr_area / quad_area)};
  } 
  
  static Point ProjPointToLine(Point p, Line l) { ///Tested
    Point diff = l[1] - l[0];
    return l[0] + diff * (diff.DotProd(p - l[0]) / diff.DotProd(diff));
  }
  
  static Point ReflectPtWRTLine(Point p, Line l) {
    Point proj = ProjPointToLine(p, l);
    return proj * 2 - p;
  }
  
  static vector<Point> InterCircleLine(Circle c, Line l) { /// Tested here: http://codeforces.com/gym/100554/submission/10197624
    Point proj = ProjPointToLine(c.center, l);
    LD dis_proj = c.center.Dist(proj);
    if (dis_proj > c.r + kEps) { return vector<Point>(); }
    LD a = sqrt(max((LD)0, Sq(c.r) - Sq(dis_proj)));
    Point dir = l[1] - l[0];
    LD dir_norm = dir.Norm();
    vector<Point> cands{proj + dir * (a / dir_norm), proj - dir * (a / dir_norm)};
    if (cands[0].Dist(cands[1]) < kEps) { return vector<Point>{proj}; }
    return cands;
  }
  
  static bool PtBelongToLine(Line l, Point p) {
    return abs(l[0].CrossProd(l[1], p)) < kEps;
  }
  
  static bool PtBelongToSeg(Line l, Point p) { // seems ok
    return abs(p.Dist(l[0]) + p.Dist(l[1]) - l[0].Dist(l[1])) < kEps;
  }
  
  static vector<Point> InterCircleSeg(Circle c, Line l) { //seems ok
    vector<Point> from_line = InterCircleLine(c, l);
    vector<Point> res;
    for (auto p : from_line) {
      if (PtBelongToSeg(l, p)) { res.PB(p); }
    }
    return res;
  }
  
  static vector<Point> TangencyPtsToCircle(Circle c, Point p) { // seems ok
    LD d = c.center.Dist(p);
    if (d < c.r - kEps) { return {}; }
    if (d < c.r + kEps) { return {p}; }
    LD from_cent = (p - c.center).Angle();
    LD ang_dev = acos(c.r / d);
    return {c.RotateRightMost(from_cent - ang_dev), c.RotateRightMost(from_cent + ang_dev)};
  }
  
  // outer and inner tangents tested only locally (however I believe that rigorously)
  static vector<Line> OuterTangents(Circle c1, Circle c2) {
    if (c1 == c2) { return {}; } // is it surely best choice?
    if (c1.r < c2.r) { swap(c1, c2); }
    if (c2.r + c1.center.Dist(c2.center) < c1.r - kEps) { return {}; }
    if (abs(c1.r - c2.r) < kEps) {
      Point diff = c2.center - c1.center;
      Point R = diff.Rotate(kPi / 2) * (c1.r / diff.Norm()); 
      return {{c1.center + R, c2.center + R}, {c1.center - R, c2.center - R}};
    }
    Point I = c1.center + (c2.center - c1.center) * (c1.r / (c1.r - c2.r)); 
    if (c2.r + c1.center.Dist(c2.center) < c1.r + kEps) {
      return {{I, I + (c2.center - c1.center).Rotate(kPi / 2)}};
    }
    vector<Point> to1 = TangencyPtsToCircle(c1, I);
    vector<Point> to2 = TangencyPtsToCircle(c2, I);
    vector<Line> res{{to1[0], to2[0]}, {to1[1], to2[1]}};
    assert(Utils::PtBelongToLine(res[0], I));
    assert(Utils::PtBelongToLine(res[1], I));
    return res;
  }
    
  // unfortunately big part of code is same as in previous function
  // can be joined when putting appropriate signs in few places
  // however those ifs differ a bit hence it may not be good idea
  // to necessarily join them
  static vector<Line> InnerTangents(Circle c1, Circle c2) {
    if (c1 == c2) { return {}; } // this time surely best choice
    if (c1.r < c2.r) { swap(c1, c2); }
    LD d = c1.center.Dist(c2.center);
    if (d < c1.r + c2.r - kEps) { return {}; }
    Point I = c1.center + (c2.center - c1.center) * (c1.r / (c1.r + c2.r));
    if (d < c1.r + c2.r + kEps) {
      return {{I, I + (c2.center - c1.center).Rotate(kPi / 2)}};
    }
    vector<Point> to1 = TangencyPtsToCircle(c1, I);
    vector<Point> to2 = TangencyPtsToCircle(c2, I);
    vector<Line> res{{to1[0], to2[0]}, {to1[1], to2[1]}};
    assert(Utils::PtBelongToLine(res[0], I));
    assert(Utils::PtBelongToLine(res[1], I));
    return res;
  }
  
  static bool AreParallel(Line l1, Line l2) { // seems ok
    return abs(l1[0].CrossProd(l2[0], l1[1]) - l1[0].CrossProd(l2[1], l1[1])) < kEps;
  }
  
  // returns a vector of points such that their convex hull is intersection of those segments
  // SZ(res) == 0 => empty intersection, SZ(res) == 1 => intersection is a point, SZ(res) == 2 => intersection is a segment
  static vector<Point> InterSegs(Line l1, Line l2) { // seems ok
    if (!Point::LexCmp(l1[0], l1[1])) { swap(l1[0], l1[1]); }
    if (!Point::LexCmp(l2[0], l2[1])) { swap(l2[0], l2[1]); }
    if (AreParallel(l1, l2)) {
      if (!PtBelongToLine(l1, l2[0])) { return vector<Point>(); }
      vector<Point> ends(2);
      for (int tr = 0; tr < 2; tr++) {
        if (Point::LexCmp(l1[tr], l2[tr]) ^ tr) {
          ends[tr] = l2[tr];
        } else {
          ends[tr] = l1[tr];
        }
      }
      if ((ends[1] - ends[0]).IsZero()) {
        ends.pop_back();
      }
      if (SZ(ends) == 2 && Point::LexCmp(ends[1], ends[0])) { return vector<Point>(); }
      return ends;
    } else {
      vector<Point> p = InterLineLine(l1, l2);
      if (PtBelongToSeg(l1, p[0]) && PtBelongToSeg(l2, p[0])) { return p; }
      return vector<Point>();
    }
  }
  
  static LD Angle(Point P, Point Q, Point R) { // angle PQR
    LD ang2 = (P - Q).Angle();
    LD ang1 = (R - Q).Angle();
    LD ans = ang1 - ang2;
    if (ans < kEps) {
      ans += 2 * kPi;
    }
    return ans;
  }
  
  // tested here: http://codeforces.com/contest/600/submission/14961583
  // DON'T change anything as this will lead to precision errors
  // don't know why, but this is the only version which works precisely even for very mean cases
  static LD DiskInterArea(Circle c1, Circle c2) { // tested here: http://opentrains.snarknews.info/~ejudge/team.cgi?contest_id=006254 problem I
    if (c1.r < c2.r) {
      swap(c1, c2);
    }
    LD d = c1.center.Dist(c2.center);
    if (c1.r + c2.r < d + kEps) {
      return 0;
    }
    if (c1.r - c2.r > d - kEps) {
      return kPi * Sq(c2.r);
    }
    LD alfa = acos((Sq(d) + Sq(c1.r) - Sq(c2.r)) / (2 * d * c1.r));
    LD beta = acos((Sq(d) + Sq(c2.r) - Sq(c1.r)) / (2 * d * c2.r));
    return alfa * Sq(c1.r) + beta * Sq(c2.r) - sin(2 * alfa) * Sq(c1.r) / 2 - sin(2 * beta) * Sq(c2.r) / 2;
  }
  
  static Line RadAxis(Circle c1, Circle c2) {
    LD d = c1.center.Dist(c2.center);
    LD a = (Sq(c1.r) - Sq(c2.r) + Sq(d)) / (2 * d);
    Point Q = c1.center + (c2.center - c1.center) * (a / d);
    Point R = Q + (c2.center - c1.center).Rotate(kPi / 2);
    return Line(Q, R);
  }
};

struct Polygon {
  vector<Point> pts;
  Polygon(vector<Point> pts_) : pts(pts_) {}
  Polygon() : Polygon(vector<Point>()) {}
  void Add(Point p) {
    pts.push_back(p);
  }
  // positive for counterclockwise
  double Area() {
    double area = 0;
    for (int i = 0; i < SZ(pts); i++) {
      area += pts[i].CrossProd(pts[(i + 1) % SZ(pts)]);
    }
    area /= 2;
    return area;
  }
  void OrientCounterclockwise() {
    if (Area() < 0) {
      reverse(pts.begin(), pts.end());
    }
  }
  int next(int a) {
    if (a + 1 < SZ(pts)) {
      return a + 1;
    }
    return 0;
  }
  pair<int, int> FurthestPair() { // tested here: http://codeforces.com/contest/333/submission/11058065
    MakeConvexHull();
    OrientCounterclockwise();
    int furth = 1;
    pair<int, int> best_pair = make_pair(0, 0);
    double best_dis = 0;
    for (int i = 0; i < SZ(pts); i++) {
      Point side = pts[next(i)] - pts[i];
      while (side.CrossProd(pts[furth] - pts[i]) < side.CrossProd(pts[next(furth)] - pts[i])) {
        furth = next(furth);
      }
      vector<int> vec{i, next(i)};
      for (auto ind : vec) {
        if (pts[ind].Dist(pts[furth]) > best_dis) {
          best_pair = make_pair(ind, furth);
          best_dis = pts[ind].Dist(pts[furth]);
        }
      }
      cerr<<"Furthest from: "<<pts[i]<<"-"<<pts[next(i)]<<" is "<<pts[furth]<<endl;
    }
    return best_pair;
  }
  // for square 34 
  //            12 holds one_way_hull = {{1,3,4},{1,2,4}}
  // resulting polygon is counterclockwise {1, 2, 4, 3}
  vector<vector<Point>> MakeConvexHull() { // tested everywhere http://codeforces.com/contest/333/submission/11058065
    vector<vector<Point>> one_way_hull(2);
    sort(pts.begin(), pts.end(), Point::LexCmp);
    for (int dir = -1; dir <= 1; dir += 2) {
      int hull_num = (dir + 1) / 2;
      auto& H = one_way_hull[hull_num];
      one_way_hull[hull_num].push_back(pts[0]);
      if (SZ(pts) > 1) {
        H.push_back(pts[1]);
      }
      for (int i = 2; i < SZ(pts); i++) {
        while (SZ(H) >= 2 &&
            dir * (pts[i] - H[SZ(H) - 2]).CrossProd(H.back() - H[SZ(H) - 2]) > -kEps) {
          H.pop_back();
        }
        H.push_back(pts[i]);
      }
      if (SZ(H) > 1 && (H[0] - H.back()).IsZero()) { H.pop_back(); }
    }
    pts.clear();
    for (auto p : one_way_hull[1]) {
      pts.push_back(p);
    }
    for (int i = SZ(one_way_hull[0]) - 2; i >= 1; i--) {
      pts.push_back(one_way_hull[0][i]);
    }
    return one_way_hull;
  }
  
  // without sides
  vector<vector<bool>> InsideDiagonalsMatrix() { // tested here: http://codeforces.com/contest/438/submission/11063385
    int n = pts.size();
    vector<vector<bool>> res(n, vector<bool>(n));
    for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        Line diag(pts[i], pts[j]);
        if (i == j || abs(i - j) == 1 || abs(i - j) == n - 1) { continue; }
        res[i][j] = 1;
        for (int k = 0; k < n; k++) {
          int kk = next(k);
          Line side(pts[k], pts[kk]);
          if (k == i || k == j || kk == i || kk == j) { continue; }
          vector<Point> inter = Utils::InterSegs(diag, side);
          if (SZ(inter)) { res[i][j] = 0; }
        }
        int act = next(i);
        LD areas[2] = {0, 0};
        int passed_j = 0;
        while (act != i) {
          passed_j |= (act == j);
          areas[passed_j] += pts[i].CrossProd(pts[act], pts[next(act)]);
          act = next(act);
        }
        if (areas[0] * areas[1] < kEps) {
          res[i][j] = 0;
        }
      }
    }
    return res;
  }
  
  // P needs to be strictly outside polygon 
  // polygon needs to be STRICTLY convex and counterclockwise oriented (as MakeConvexHull does)
  // returns {L, R} so that PL, PR are tangents and PL is on left
  vector<Point> Tangents(Point p) { // tested here: https://icpc.kattis.com/problems/spin (1169964)
    vector<Point> res;
    REP (tr, 2) {
      auto GrThan = [&](int fir, int sec) { // fir on sec's left
        return p.CrossProd(pts[sec], pts[fir]) > kEps;
      };
      bool up = false;
      int cr = 0;
      if (SZ(pts) >= 2) { cr = p.CrossProd(pts[0], pts[1]); }
      if (abs(cr) < kEps && SZ(pts) >= 3) { cr = p.CrossProd(pts[0], pts[2]); }
      up = (cr > 0);
      VI bd{1, SZ(pts) - 1};
      int faj = 0;
      while (bd[0] + 6 <= bd[1]) { // better don't replace with smaller constants
        VI h(2);
        REP (hh, 2) { h[hh] = (bd[0] + bd[1] + bd[hh]) / 3; }
        if (!GrThan(h[up ^ tr], 0) ^ tr) { bd[up ^ tr] = h[up ^ tr]; }
        else {
          int gr = GrThan(h[0], h[1]);
          bd[gr ^ tr] = h[gr ^ tr];
        }
      }
      FOR (i, bd[0], bd[1]) {
        if (GrThan(i, faj) ^ tr) {
          faj = i;
        }
      }
      res.PB(pts[faj]);
    }
    return res;
  }
};

struct ConvexPolHalves { // tested here: https://icpc.kattis.com/problems/spin (1169964)
  vector<vector<Point>> chains; // initialized by MakeConvexHull
  bool BelongTo(Point p) { // including borders
    if (SZ(chains[0]) == 1) {
      return (chains[0][0] - p).IsZero();
    }
    if (p.x  + kEps < chains[0][0].x || p.x - kEps > chains[0].back().x) { return false; }
    REP (tr, 2) {
      int kl = 0, kp = SZ(chains[tr]) - 2, faj = 0;
      while (kl <= kp) {
        int aktc = (kl + kp) / 2;
        if (chains[tr][aktc].x < p.x + kEps) {
          kl = aktc + 1;
          faj = aktc;
        } else {
          kp = aktc - 1;
        }
      }
      Point fir = chains[tr][faj], sec = chains[tr][faj + 1];
      if (abs(fir.x - sec.x) < kEps) {
        if (tr == 0) { if (sec.y + kEps < p.y) { return false; } }
        else { if (fir.y - kEps > p.y) { return false; } }
      } else {
        LD cr = fir.CrossProd(sec, p);
        if (abs(cr) < kEps) { return true; }
        if ((cr > 0) ^ tr) { return false; }
      }
    }
    return true;
  }
};

// CLIP START
bool InUpper(Point a) {
  if (abs(a.y) > kEps) {
    return a.y > 0;
  }
  return a.x > 0;
}

bool angle_cmp(const Point a, const Point b) {
  bool u = InUpper(a);
  bool v = InUpper(b);
  return u!=v ? u : a.CrossProd(b)>0;
}

/**
  * @brief a+(b-a)*f \in c+lin(d-c)
  * @returns f
  */
LD cross(Point a, Point b, Point c, Point d) {
  return (d - c).CrossProd(a - c) / (d - c).CrossProd(a - b);
}

struct ClipLine { // valid side is on left
  ClipLine(Point A, Point B) : al(A), bl(B), a(A), b(B) {};
  Point al,bl; // original line points
  mutable Point a,b; // actual intersection points
  Point dir() const { return bl - al; }
  bool operator<(const ClipLine& l) const { return angle_cmp(dir(),l.dir()); }
  Point cross(const ClipLine& l) {
    return al + (bl - al) * ::cross(al, bl, l.al, l.bl);
  }
  bool left(Point p) {
    return (bl - al).CrossProd(p - al) > 0;
  }
};
set<VI> put;
struct Clip {
  Clip(LD r) : area(4*r*r) {
    Point a{-r,-r}, b{r,-r}, c{r,r}, d{-r,r};
    lines = {ClipLine(a,b), ClipLine(b,c), ClipLine(c,d), ClipLine(d,a)};
  }

  void insert(Line l) {
    VI abc = l.LineEqNormInt();
    if (put.count(abc)) { return; }
    put.insert(abc);
    insert(ClipLine(l[0], l[1]));
  }
  
  void insert(ClipLine l) {
    assert(abs(l.dir().SqNorm()) > kEps);
    find(l);
    while (size() && !l.left(it->a) && !l.left(it->b)) { erase(); }
    if (size()) {
      while (prev(), size() && !l.left(it->a) && !l.left(it->b)) { erase(); }
    }
    if (size() && (!l.left(it->a) || !l.left(it->b))) {
      l.a = l.cross(*it);
      area -= l.a.CrossProd(it->b)*.5; it->b = l.a; next();
      l.b = l.cross(*it);
      if ((l.a-l.b).SqNorm() < kEps) {
        l.b = l.a;
      }
      area -= it->a.CrossProd(l.b) * .5;
      it->a = l.b;
      if (!(l.a - l.b).IsZero()) {
        area += l.a.CrossProd(l.b)*.5;
        lines.insert(l);
      }
    }
    //assert(l.dir().SqNorm()>1e-13);
  }

  void find(const ClipLine &l) {
    it = lines.lower_bound(l);
    if (it == lines.end()) { it = lines.begin(); }
  }

  void recalculate() {
    area = 0; for (const ClipLine &l : lines) area += l.a.CrossProd(l.b);
    area *= .5;
  }

  int size() { return lines.size(); }
  void next() { if(++it==lines.end()) it = lines.begin(); }
  void prev() { if(it==lines.begin()) it = lines.end(); --it; }
  void erase() {
      assert(it!=lines.end());
      area -= it->a.CrossProd(it->b)*.5;
      it = lines.erase(it);
      if(it==lines.end()) it = lines.begin();
  }
  typename set<ClipLine>::iterator it;
  set<ClipLine> lines;
  LD area;
};
// CLIP ENDS

// CENTERS BEGIN
Point Bary(Point A, Point B, Point C, LD a, LD b, LD c) {
    return (A * a + B * b + C * c) / (a + b + c);
}

Point Centroid(Point A, Point B, Point C) {
    return Bary(A, B, C, 1, 1, 1);
}

Point Circumcenter(Point A, Point B, Point C) {
    LD a = (B - C).SqNorm(), b = (C - A).SqNorm(), c = (A - B).SqNorm();
    return Bary(A, B, C, a * (b + c - a), b * (c + a - b), c * (a + b - c));
}

Point Incenter(Point A, Point B, Point C) {
    return Bary(A, B, C, (B - C).Norm(), (A - C).Norm(), (A - B).Norm());
}

Point Orthocenter(Point A, Point B, Point C) {
    LD a = (B - C).SqNorm(), b = (C - A).SqNorm(), c = (A - B).SqNorm();
    return Bary(A, B, C, (a+b-c)*(c+a-b), (b+c-a)*(a+b-c), (c+a-b)*(b+c-a));
}

Point Excenter(Point A, Point B, Point C) { // opposite to A
    LD a = (B - C).Norm(), b = (A - C).Norm(), c = (A - B).Norm();
    return Bary(A, B, C, -a, b, c);
}


// const LD kEps = 1e-9;
// const LD kPi = 2 * acos(0);
struct PointInt {
  int x, y;
  PointInt operator-(PointInt p) { return {x - p.x, y - p.y}; }
  PointInt operator+(PointInt p) { return {x + p.x, y + p.y}; }
//   Point operator*(LD f) { return {x * f, y * f}; }
//   bool operator<(const Point& oth) const {
//     if (abs(x - oth.x) > kEps) { return x < oth.x; }
//     if (abs(y - oth.y) > kEps) { return y < oth.y; }
//     return false;
//   }
//   LD Angle() {
//     return atan2(y, x);
//   }
};
// LD Normalize(LD ang) {
//   if (ang < -kPi) {
//     ang += 2 * kPi;
//   }
//   if (ang > kPi) {
//     ang -= 2 * kPi;
//   }
//   return ang;
// }
int CrossProd(PointInt A, PointInt B, PointInt C) {
  B = B - A;
  C = C - A;
  return B.x * C.y - B.y * C.x;
}
// vector<Point> InterLineLine(Point A, Point B, Point P, Point Q) {
//   LD tr_area = CrossProd(A, P, Q);
//   LD quad_area = CrossProd(A, P, B) + CrossProd(A, B, Q);
//   if (abs(quad_area) < 1e-9) {
//     return {};
//   }
//   return {A + (B - A) * (tr_area / quad_area)};
// }

const int N = 222;
int n;
vector<PointInt> segs[N];
// bool CheckPoint(Point p) {
//   int bil = 0;
//   vector<pair<LD, int>> evs;
//   RE (i, n) {
//     Point D1 = segs[i][0] - p;
//     Point D2 = segs[i][1] - p;
//     LD ang1 = D1.Angle();
//     LD ang2 = D2.Angle();
//     LD diff = Normalize(ang2 - ang1);
//     if (diff < 0) {
//       swap(D1, D2);
//       swap(ang1, ang2);
//     }
//     LD from = Normalize(ang2 - kPi / 2);
//     LD to = Normalize(ang1 + kPi / 2);
//     evs.PB({from, 1});
//     evs.PB({to, -1});
//     if (from > to) {
//       bil++;
//     }
//   }
//   sort(ALL(evs));
//   if (bil == 0) { return false; }
//   for (auto ev : evs) {
//     bil += ev.nd;
//     if (bil == 0) { return false; }
//   }
//   return true;
// }

Point PFromPI(PointInt P) {
  debug(P.x, P.y);
  return {(LD)P.x, (LD)P.y};
}

int32_t main() {

  ios_base::sync_with_stdio(0);
  cout << fixed << setprecision(15);
  cerr << fixed << setprecision(15);
  cin.tie(0);
  //double beg_clock = 1.0 * clock() / CLOCKS_PER_SEC;
  
  cin>>n;
  vector<Point> pts;
  RE (i, n) {
    int x1, y1, x2, y2;
    cin>>x1>>y1>>x2>>y2;
    segs[i].PB(PointInt{x1, y1});
    segs[i].PB(PointInt{x2, y2});
    //pts.PB(Point{LD(x1), LD(y1)});
    //pts.PB(Point{LD(x2), LD(y2)});
  }
  //map<Point, int> ids;
  Clip clip(1e4);
  set<VI> put_lines;
  RE (i, n) {
    RE (j, i - 1) {
      REP (ti, 2) {
        REP (tj, 2) {
          bool can_all_atmost0 = 1, can_all_atleast0 = 1;
          PointInt P = segs[i][ti], Q = segs[j][tj];
          RE (k, n) {
            if (k == i || k == j) { continue; }
            int cr0 = CrossProd(P, Q, segs[k][0]);
            int cr1 = CrossProd(P, Q, segs[k][1]);
            can_all_atleast0 &= (cr0 >= 0 || cr1 >= 0);
            can_all_atmost0 &= (cr0 <= 0 || cr1 <= 0);
          }
          if (can_all_atleast0 && can_all_atmost0) {
            cout<<(LD)0<<endl;
            return 0;
          }
          if (can_all_atleast0) {
            debug(">=0");
            Line l = Line{PFromPI(P), PFromPI(Q)};
            clip.insert(l);
          }
          if (can_all_atmost0) {
            debug("<=0");
            clip.insert(Line{PFromPI(Q), PFromPI(P)});
          }
        }
      }
    }
  }
  clip.recalculate();
  cout<<clip.area<<endl;
              
      
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  return 0;
}