#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;} // head typedef double db; const db EPS = 1e-9; inline int sign(db a) { return a < -EPS ? -1 : a > EPS; } inline int cmp(db a, db b){ return sign(a-b); } struct P { db x, y; P() {} P(db _x, db _y) : x(_x), y(_y) {} P operator+(P p) { return {x + p.x, y + p.y}; } P operator-(P p) { return {x - p.x, y - p.y}; } P operator*(db d) { return {x * d, y * d}; } P operator/(db d) { return {x / d, y / d}; } bool operator<(P p) const { int c = cmp(x, p.x); if (c) return c == -1; return cmp(y, p.y) == -1; } bool operator==(P o) const{ return cmp(x,o.x) == 0 && cmp(y,o.y) == 0; } db dot(P p) { return x * p.x + y * p.y; } db det(P p) { return x * p.y - y * p.x; } db distTo(P p) { return (*this-p).abs(); } db alpha() { return atan2(y, x); } void read() { cin>>x>>y; } void write() {cout<<"("<<x<<","<<y<<")"<<endl;} db abs() { return sqrt(abs2());} db abs2() { return x * x + y * y; } P rot90() { return P(-y,x);} P unit() { return *this/abs(); } int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); } P rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; } }; struct L{ //ps[0] -> ps[1] P ps[2]; L() {} L(P p1,P p2) { ps[0]=p1; ps[1]=p2; } P& operator[](int i) { return ps[i]; } P dir() { return ps[1] - ps[0]; } bool include(P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; } L push(){ // push eps outward const double eps = 1e-10; P delta = (ps[1] - ps[0]).rot90().unit() * eps; return L(ps[0] - delta, ps[1] - delta); } }; #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y)) #define crossOp(p1,p2,p3) sign(cross(p1,p2,p3)) bool chkLL(P p1, P p2, P q1, P q2) { db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return sign(a1+a2) != 0; } P isLL(P p1, P p2, P q1, P q2) { db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return (p1 * a2 + p2 * a1) / (a1 + a2); } P isLL(L l1,L l2){ return isLL(l1[0],l1[1],l2[0],l2[1]); } bool intersect(db l1,db r1,db l2,db r2){ if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2); return !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 ); } bool isSS(P p1, P p2, P q1, P q2){ return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) && crossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1) * crossOp(q1,q2,p2) <= 0; } bool isSS_strict(P p1, P p2, P q1, P q2){ return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1) * crossOp(q1,q2,p2) < 0; } bool isMiddle(db a, db m, db b) { return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m); } bool isMiddle(P a, P m, P b) { return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y); } bool onSeg(P p1, P p2, P q){ return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2); } bool onSeg_strict(P p1, P p2, P q){ return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0; } P proj(P p1, P p2, P q) { P dir = p2 - p1; return p1 + dir * (dir.dot(q - p1) / dir.abs2()); } P reflect(P p1, P p2, P q){ return proj(p1,p2,q) * 2 - q; } db nearest(P p1,P p2,P q){ P h = proj(p1,p2,q); if(isMiddle(p1,h,p2)) return q.distTo(h); return min(p1.distTo(q),p2.distTo(q)); } db disSS(P p1, P p2, P q1, P q2){ if(isSS(p1,p2,q1,q2)) return 0; return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2))); } db rad(P p1,P p2){ return atan2l(p1.det(p2),p1.dot(p2)); } db incircle(P p1, P p2, P p3){ db A = p1.distTo(p2); db B = p2.distTo(p3); db C = p3.distTo(p1); return sqrtl(A*B*C/(A+B+C)); } //polygon db area(vector<P> ps){ db ret = 0; rep(i,0,ps.size()) ret += ps[i].det(ps[(i+1)%ps.size()]); return ret/2; } int contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside int n = ps.size(), ret = 0; rep(i,0,n){ P u=ps[i],v=ps[(i+1)%n]; if(onSeg(u,v,p)) return 1; if(cmp(u.y,v.y)<=0) swap(u,v); if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue; ret ^= crossOp(p,u,v) > 0; } return ret*2; } vector<P> convexHull(vector<P> ps) { int n = ps.size(); if(n <= 1) return ps; sort(ps.begin(), ps.end()); vector<P> qs(n * 2); int k = 0; for (int i = 0; i < n; qs[k++] = ps[i++]) while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k; for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k; qs.resize(k - 1); return qs; } vector<P> convexHullNonStrict(vector<P> ps) { //caution: need to unique the Ps first int n = ps.size(); if(n <= 1) return ps; sort(ps.begin(), ps.end()); vector<P> qs(n * 2); int k = 0; for (int i = 0; i < n; qs[k++] = ps[i++]) while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k; for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k; qs.resize(k - 1); return qs; } db convexDiameter(vector<P> ps){ int n = ps.size(); if(n <= 1) return 0; int is = 0, js = 0; rep(k,1,n) is = ps[k]<ps[is]?k:is, js = ps[js] < ps[k]?k:js; int i = is, j = js; db ret = ps[i].distTo(ps[j]); do{ if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j]) >= 0) (++j)%=n; else (++i)%=n; ret = max(ret,ps[i].distTo(ps[j])); }while(i!=is || j!=js); return ret; } vector<P> convexCut(const vector<P>&ps, P q1, P q2) { vector<P> qs; int n = ps.size(); rep(i,0,n){ P p1 = ps[i], p2 = ps[(i+1)%n]; int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2); if(d1 >= 0) qs.pb(p1); if(d1 * d2 < 0) qs.pb(isLL(p1,p2,q1,q2)); } return qs; } //min_dist db min_dist(vector<P>&ps,int l,int r){ if(r-l<=5){ db ret = 1e100; rep(i,l,r) rep(j,l,i) ret = min(ret,ps[i].distTo(ps[j])); return ret; } int m = (l+r)>>1; db ret = min(min_dist(ps,l,m),min_dist(ps,m,r)); vector<P> qs; rep(i,l,r) if(abs(ps[i].x-ps[m].x)<= ret) qs.pb(ps[i]); sort(qs.begin(), qs.end(),[](P a,P b) -> bool {return a.y<b.y; }); rep(i,1,qs.size()) for(int j=i-1;j>=0&&qs[j].y>=qs[i].y-ret;--j) ret = min(ret,qs[i].distTo(qs[j])); return ret; } int type(P o1,db r1,P o2,db r2){ db d = o1.distTo(o2); if(cmp(d,r1+r2) == 1) return 4; if(cmp(d,r1+r2) == 0) return 3; if(cmp(d,abs(r1-r2)) == 1) return 2; if(cmp(d,abs(r1-r2)) == 0) return 1; return 0; } vector<P> isCL(P o,db r,P p1,P p2){ if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {}; db x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y * ((p1-o).abs2() - r*r); d = max(d,0.0); P m = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y); return {m-dr,m+dr}; //along dir: p1->p2 } vector<P> isCC(P o1, db r1, P o2, db r2) { //need to check whether two circles are the same db d = o1.distTo(o2); if (cmp(d, r1 + r2) == 1) return {}; if (cmp(d,abs(r1-r2))==-1) return {}; d = min(d, r1 + r2); db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y); P dr = (o2 - o1).unit(); P q1 = o1 + dr * y, q2 = dr.rot90() * x; return {q1-q2,q1+q2};//along circle 1 } vector<P> tanCP(P o, db r, P p) { db x = (p - o).abs2(), d = x - r * r; if (sign(d) <= 0) return {}; // on circle => no tangent P q1 = o + (p - o) * (r * r / x); P q2 = (p - o).rot90() * (r * sqrt(d) / x); return {q1-q2,q1+q2}; //counter clock-wise } vector<L> extanCC(P o1, db r1, P o2, db r2) { vector<L> ret; if (cmp(r1, r2) == 0) { P dr = (o2 - o1).unit().rot90() * r1; ret.pb(L(o1 + dr, o2 + dr)), ret.pb(L(o1 - dr, o2 - dr)); } else { P p = (o2 * r1 - o1 * r2) / (r1 - r2); vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p); rep(i,0,min(ps.size(),qs.size())) ret.pb(L(ps[i], qs[i])); //c1 counter-clock wise } return ret; } vector<L> intanCC(P o1, db r1, P o2, db r2) { vector<L> ret; P p = (o1 * r2 + o2 * r1) / (r1 + r2); vector<P> ps = tanCP(o1,r1,p), qs = tanCP(o2,r2,p); rep(i,0,min(ps.size(),qs.size())) ret.pb(L(ps[i], qs[i])); //c1 counter-clock wise return ret; } db areaCT(db r, P p1, P p2){ vector<P> is = isCL(P(0,0),r,p1,p2); if(is.empty()) return r*r*rad(p1,p2)/2; bool b1 = cmp(p1.abs2(),r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1; if(b1 && b2){ if(sign((p1-is[0]).dot(p2-is[0])) <= 0 && sign((p1-is[0]).dot(p2-is[0])) <= 0) return r*r*(rad(p1,is[0]) + rad(is[1],p2))/2 + is[0].det(is[1])/2; else return r*r*rad(p1,p2)/2; } if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2; if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2; return p1.det(p2)/2; } bool parallel(L l0, L l1) { return sign( l0.dir().det( l1.dir() ) ) == 0; } bool sameDir(L l0, L l1) { return parallel(l0, l1) && sign(l0.dir().dot(l1.dir()) ) == 1; } bool cmp (P a, P b) { if (a.quad() != b.quad()) { return a.quad() < b.quad(); } else { return sign( a.det(b) ) > 0; } } bool operator < (L l0, L l1) { if (sameDir(l0, l1)) { return l1.include(l0[0]); } else { return cmp( l0.dir(), l1.dir() ); } } bool check(L u, L v, L w) { return w.include(isLL(u,v)); } vector<P> halfPlaneIS(vector<L> &l) { sort(l.begin(), l.end()); deque<L> q; for (int i = 0; i < (int)l.size(); ++i) { if (i && sameDir(l[i], l[i - 1])) continue; while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) q.pop_back(); while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front(); q.push_back(l[i]); } while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back(); while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front(); vector<P> ret; for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q[(i + 1) % q.size()])); return ret; } P inCenter(P A, P B, P C) { double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs(); return (A * a + B * b + C * c) / (a + b + c); } P circumCenter(P a, P b, P c) { P bb = b - a, cc = c - a; double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc); return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d; } P othroCenter(P a, P b, P c) { P ba = b - a, ca = c - a, bc = b - c; double Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y, x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A, y0 = -ba.x * (x0 - c.x) / ba.y + ca.y; return {x0, y0}; } int n; vector<P> p; P a[110],b[110]; vector<L> l; int main() { scanf("%d",&n); for (int i=0;i<n;i++) { int x,y; scanf("%d%d",&x,&y); a[i]=P(x,y); scanf("%d%d",&x,&y); b[i]=P(x,y); p.pb(a[i]); p.pb(b[i]); } rep(i,0,2*n) rep(j,0,2*n) if (!(p[i]==p[j])) { P dir=(p[j]-p[i]).unit().rot90(); db c=1e9; rep(i,0,n) { c=min(c,max(a[i].dot(dir),b[i].dot(dir))); } l.pb(L(dir*c,dir*c+p[j]-p[i])); } printf("%.15f\n",area(halfPlaneIS(l))); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | #include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;} // head typedef double db; const db EPS = 1e-9; inline int sign(db a) { return a < -EPS ? -1 : a > EPS; } inline int cmp(db a, db b){ return sign(a-b); } struct P { db x, y; P() {} P(db _x, db _y) : x(_x), y(_y) {} P operator+(P p) { return {x + p.x, y + p.y}; } P operator-(P p) { return {x - p.x, y - p.y}; } P operator*(db d) { return {x * d, y * d}; } P operator/(db d) { return {x / d, y / d}; } bool operator<(P p) const { int c = cmp(x, p.x); if (c) return c == -1; return cmp(y, p.y) == -1; } bool operator==(P o) const{ return cmp(x,o.x) == 0 && cmp(y,o.y) == 0; } db dot(P p) { return x * p.x + y * p.y; } db det(P p) { return x * p.y - y * p.x; } db distTo(P p) { return (*this-p).abs(); } db alpha() { return atan2(y, x); } void read() { cin>>x>>y; } void write() {cout<<"("<<x<<","<<y<<")"<<endl;} db abs() { return sqrt(abs2());} db abs2() { return x * x + y * y; } P rot90() { return P(-y,x);} P unit() { return *this/abs(); } int quad() const { return sign(y) == 1 || (sign(y) == 0 && sign(x) >= 0); } P rot(db an){ return {x*cos(an)-y*sin(an),x*sin(an) + y*cos(an)}; } }; struct L{ //ps[0] -> ps[1] P ps[2]; L() {} L(P p1,P p2) { ps[0]=p1; ps[1]=p2; } P& operator[](int i) { return ps[i]; } P dir() { return ps[1] - ps[0]; } bool include(P p) { return sign((ps[1] - ps[0]).det(p - ps[0])) > 0; } L push(){ // push eps outward const double eps = 1e-10; P delta = (ps[1] - ps[0]).rot90().unit() * eps; return L(ps[0] - delta, ps[1] - delta); } }; #define cross(p1,p2,p3) ((p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y)) #define crossOp(p1,p2,p3) sign(cross(p1,p2,p3)) bool chkLL(P p1, P p2, P q1, P q2) { db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return sign(a1+a2) != 0; } P isLL(P p1, P p2, P q1, P q2) { db a1 = cross(q1, q2, p1), a2 = -cross(q1, q2, p2); return (p1 * a2 + p2 * a1) / (a1 + a2); } P isLL(L l1,L l2){ return isLL(l1[0],l1[1],l2[0],l2[1]); } bool intersect(db l1,db r1,db l2,db r2){ if(l1>r1) swap(l1,r1); if(l2>r2) swap(l2,r2); return !( cmp(r1,l2) == -1 || cmp(r2,l1) == -1 ); } bool isSS(P p1, P p2, P q1, P q2){ return intersect(p1.x,p2.x,q1.x,q2.x) && intersect(p1.y,p2.y,q1.y,q2.y) && crossOp(p1,p2,q1) * crossOp(p1,p2,q2) <= 0 && crossOp(q1,q2,p1) * crossOp(q1,q2,p2) <= 0; } bool isSS_strict(P p1, P p2, P q1, P q2){ return crossOp(p1,p2,q1) * crossOp(p1,p2,q2) < 0 && crossOp(q1,q2,p1) * crossOp(q1,q2,p2) < 0; } bool isMiddle(db a, db m, db b) { return sign(a - m) == 0 || sign(b - m) == 0 || (a < m != b < m); } bool isMiddle(P a, P m, P b) { return isMiddle(a.x, m.x, b.x) && isMiddle(a.y, m.y, b.y); } bool onSeg(P p1, P p2, P q){ return crossOp(p1,p2,q) == 0 && isMiddle(p1, q, p2); } bool onSeg_strict(P p1, P p2, P q){ return crossOp(p1,p2,q) == 0 && sign((q-p1).dot(p1-p2)) * sign((q-p2).dot(p1-p2)) < 0; } P proj(P p1, P p2, P q) { P dir = p2 - p1; return p1 + dir * (dir.dot(q - p1) / dir.abs2()); } P reflect(P p1, P p2, P q){ return proj(p1,p2,q) * 2 - q; } db nearest(P p1,P p2,P q){ P h = proj(p1,p2,q); if(isMiddle(p1,h,p2)) return q.distTo(h); return min(p1.distTo(q),p2.distTo(q)); } db disSS(P p1, P p2, P q1, P q2){ if(isSS(p1,p2,q1,q2)) return 0; return min(min(nearest(p1,p2,q1),nearest(p1,p2,q2)), min(nearest(q1,q2,p1),nearest(q1,q2,p2))); } db rad(P p1,P p2){ return atan2l(p1.det(p2),p1.dot(p2)); } db incircle(P p1, P p2, P p3){ db A = p1.distTo(p2); db B = p2.distTo(p3); db C = p3.distTo(p1); return sqrtl(A*B*C/(A+B+C)); } //polygon db area(vector<P> ps){ db ret = 0; rep(i,0,ps.size()) ret += ps[i].det(ps[(i+1)%ps.size()]); return ret/2; } int contain(vector<P> ps, P p){ //2:inside,1:on_seg,0:outside int n = ps.size(), ret = 0; rep(i,0,n){ P u=ps[i],v=ps[(i+1)%n]; if(onSeg(u,v,p)) return 1; if(cmp(u.y,v.y)<=0) swap(u,v); if(cmp(p.y,u.y) >0 || cmp(p.y,v.y) <= 0) continue; ret ^= crossOp(p,u,v) > 0; } return ret*2; } vector<P> convexHull(vector<P> ps) { int n = ps.size(); if(n <= 1) return ps; sort(ps.begin(), ps.end()); vector<P> qs(n * 2); int k = 0; for (int i = 0; i < n; qs[k++] = ps[i++]) while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k; for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) <= 0) --k; qs.resize(k - 1); return qs; } vector<P> convexHullNonStrict(vector<P> ps) { //caution: need to unique the Ps first int n = ps.size(); if(n <= 1) return ps; sort(ps.begin(), ps.end()); vector<P> qs(n * 2); int k = 0; for (int i = 0; i < n; qs[k++] = ps[i++]) while (k > 1 && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k; for (int i = n - 2, t = k; i >= 0; qs[k++] = ps[i--]) while (k > t && crossOp(qs[k - 2], qs[k - 1], ps[i]) < 0) --k; qs.resize(k - 1); return qs; } db convexDiameter(vector<P> ps){ int n = ps.size(); if(n <= 1) return 0; int is = 0, js = 0; rep(k,1,n) is = ps[k]<ps[is]?k:is, js = ps[js] < ps[k]?k:js; int i = is, j = js; db ret = ps[i].distTo(ps[j]); do{ if((ps[(i+1)%n]-ps[i]).det(ps[(j+1)%n]-ps[j]) >= 0) (++j)%=n; else (++i)%=n; ret = max(ret,ps[i].distTo(ps[j])); }while(i!=is || j!=js); return ret; } vector<P> convexCut(const vector<P>&ps, P q1, P q2) { vector<P> qs; int n = ps.size(); rep(i,0,n){ P p1 = ps[i], p2 = ps[(i+1)%n]; int d1 = crossOp(q1,q2,p1), d2 = crossOp(q1,q2,p2); if(d1 >= 0) qs.pb(p1); if(d1 * d2 < 0) qs.pb(isLL(p1,p2,q1,q2)); } return qs; } //min_dist db min_dist(vector<P>&ps,int l,int r){ if(r-l<=5){ db ret = 1e100; rep(i,l,r) rep(j,l,i) ret = min(ret,ps[i].distTo(ps[j])); return ret; } int m = (l+r)>>1; db ret = min(min_dist(ps,l,m),min_dist(ps,m,r)); vector<P> qs; rep(i,l,r) if(abs(ps[i].x-ps[m].x)<= ret) qs.pb(ps[i]); sort(qs.begin(), qs.end(),[](P a,P b) -> bool {return a.y<b.y; }); rep(i,1,qs.size()) for(int j=i-1;j>=0&&qs[j].y>=qs[i].y-ret;--j) ret = min(ret,qs[i].distTo(qs[j])); return ret; } int type(P o1,db r1,P o2,db r2){ db d = o1.distTo(o2); if(cmp(d,r1+r2) == 1) return 4; if(cmp(d,r1+r2) == 0) return 3; if(cmp(d,abs(r1-r2)) == 1) return 2; if(cmp(d,abs(r1-r2)) == 0) return 1; return 0; } vector<P> isCL(P o,db r,P p1,P p2){ if (cmp(abs((o-p1).det(p2-p1)/p1.distTo(p2)),r)>0) return {}; db x = (p1-o).dot(p2-p1), y = (p2-p1).abs2(), d = x * x - y * ((p1-o).abs2() - r*r); d = max(d,0.0); P m = p1 - (p2-p1)*(x/y), dr = (p2-p1)*(sqrt(d)/y); return {m-dr,m+dr}; //along dir: p1->p2 } vector<P> isCC(P o1, db r1, P o2, db r2) { //need to check whether two circles are the same db d = o1.distTo(o2); if (cmp(d, r1 + r2) == 1) return {}; if (cmp(d,abs(r1-r2))==-1) return {}; d = min(d, r1 + r2); db y = (r1 * r1 + d * d - r2 * r2) / (2 * d), x = sqrt(r1 * r1 - y * y); P dr = (o2 - o1).unit(); P q1 = o1 + dr * y, q2 = dr.rot90() * x; return {q1-q2,q1+q2};//along circle 1 } vector<P> tanCP(P o, db r, P p) { db x = (p - o).abs2(), d = x - r * r; if (sign(d) <= 0) return {}; // on circle => no tangent P q1 = o + (p - o) * (r * r / x); P q2 = (p - o).rot90() * (r * sqrt(d) / x); return {q1-q2,q1+q2}; //counter clock-wise } vector<L> extanCC(P o1, db r1, P o2, db r2) { vector<L> ret; if (cmp(r1, r2) == 0) { P dr = (o2 - o1).unit().rot90() * r1; ret.pb(L(o1 + dr, o2 + dr)), ret.pb(L(o1 - dr, o2 - dr)); } else { P p = (o2 * r1 - o1 * r2) / (r1 - r2); vector<P> ps = tanCP(o1, r1, p), qs = tanCP(o2, r2, p); rep(i,0,min(ps.size(),qs.size())) ret.pb(L(ps[i], qs[i])); //c1 counter-clock wise } return ret; } vector<L> intanCC(P o1, db r1, P o2, db r2) { vector<L> ret; P p = (o1 * r2 + o2 * r1) / (r1 + r2); vector<P> ps = tanCP(o1,r1,p), qs = tanCP(o2,r2,p); rep(i,0,min(ps.size(),qs.size())) ret.pb(L(ps[i], qs[i])); //c1 counter-clock wise return ret; } db areaCT(db r, P p1, P p2){ vector<P> is = isCL(P(0,0),r,p1,p2); if(is.empty()) return r*r*rad(p1,p2)/2; bool b1 = cmp(p1.abs2(),r*r) == 1, b2 = cmp(p2.abs2(), r*r) == 1; if(b1 && b2){ if(sign((p1-is[0]).dot(p2-is[0])) <= 0 && sign((p1-is[0]).dot(p2-is[0])) <= 0) return r*r*(rad(p1,is[0]) + rad(is[1],p2))/2 + is[0].det(is[1])/2; else return r*r*rad(p1,p2)/2; } if(b1) return (r*r*rad(p1,is[0]) + is[0].det(p2))/2; if(b2) return (p1.det(is[1]) + r*r*rad(is[1],p2))/2; return p1.det(p2)/2; } bool parallel(L l0, L l1) { return sign( l0.dir().det( l1.dir() ) ) == 0; } bool sameDir(L l0, L l1) { return parallel(l0, l1) && sign(l0.dir().dot(l1.dir()) ) == 1; } bool cmp (P a, P b) { if (a.quad() != b.quad()) { return a.quad() < b.quad(); } else { return sign( a.det(b) ) > 0; } } bool operator < (L l0, L l1) { if (sameDir(l0, l1)) { return l1.include(l0[0]); } else { return cmp( l0.dir(), l1.dir() ); } } bool check(L u, L v, L w) { return w.include(isLL(u,v)); } vector<P> halfPlaneIS(vector<L> &l) { sort(l.begin(), l.end()); deque<L> q; for (int i = 0; i < (int)l.size(); ++i) { if (i && sameDir(l[i], l[i - 1])) continue; while (q.size() > 1 && !check(q[q.size() - 2], q[q.size() - 1], l[i])) q.pop_back(); while (q.size() > 1 && !check(q[1], q[0], l[i])) q.pop_front(); q.push_back(l[i]); } while (q.size() > 2 && !check(q[q.size() - 2], q[q.size() - 1], q[0])) q.pop_back(); while (q.size() > 2 && !check(q[1], q[0], q[q.size() - 1])) q.pop_front(); vector<P> ret; for (int i = 0; i < (int)q.size(); ++i) ret.push_back(isLL(q[i], q[(i + 1) % q.size()])); return ret; } P inCenter(P A, P B, P C) { double a = (B - C).abs(), b = (C - A).abs(), c = (A - B).abs(); return (A * a + B * b + C * c) / (a + b + c); } P circumCenter(P a, P b, P c) { P bb = b - a, cc = c - a; double db = bb.abs2(), dc = cc.abs2(), d = 2 * bb.det(cc); return a - P(bb.y * dc - cc.y * db, cc.x * db - bb.x * dc) / d; } P othroCenter(P a, P b, P c) { P ba = b - a, ca = c - a, bc = b - c; double Y = ba.y * ca.y * bc.y, A = ca.x * ba.y - ba.x * ca.y, x0 = (Y + ca.x * ba.y * b.x - ba.x * ca.y * c.x) / A, y0 = -ba.x * (x0 - c.x) / ba.y + ca.y; return {x0, y0}; } int n; vector<P> p; P a[110],b[110]; vector<L> l; int main() { scanf("%d",&n); for (int i=0;i<n;i++) { int x,y; scanf("%d%d",&x,&y); a[i]=P(x,y); scanf("%d%d",&x,&y); b[i]=P(x,y); p.pb(a[i]); p.pb(b[i]); } rep(i,0,2*n) rep(j,0,2*n) if (!(p[i]==p[j])) { P dir=(p[j]-p[i]).unit().rot90(); db c=1e9; rep(i,0,n) { c=min(c,max(a[i].dot(dir),b[i].dot(dir))); } l.pb(L(dir*c,dir*c+p[j]-p[i])); } printf("%.15f\n",area(halfPlaneIS(l))); } |