1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//polowa kodu zarabana z mojego kodu
//polowa z mojej biblioteczki acmowej (fork KTH)
//polowa z jakiejs losowej strony w internecie (szukalem halfplanes)
#include <bits/stdc++.h>
using namespace std;
#define mp make_pair
#define pb push_back
#define eb emplace_back
#define e1 first
#define e2 second
#define FOR(i, a, b) for (int i=(a); i<=(b); ++i)
#define rep(i, a, b) for(int i = a; i < (b); ++i)
#define trav(a, x) for(auto& a : x)
#define all(x) x.begin(), x.end()
#define sz(x) (int)(x).size()
#define OUT(x) {cout << x; exit(0); }
typedef pair <long double, long double> PII;
typedef pair <PII, int> PPI;
typedef long double ll;
PII tab[21]; PII hub[21];
int n;
int wart[21], DL, DLE;

int V;

template <class T>
struct Point {
typedef Point P;
T x, y;
explicit Point(T x=0, T y=0) : x(x), y(y) {}
bool operator<(P p) const { return tie(x,y) < tie(p.x,p.y); }
bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y); }
P operator+(P p) const { return P(x+p.x, y+p.y); }
P operator-(P p) const { return P(x-p.x, y-p.y); }
P operator *(T d) const { return P(x*d, y*d); }
P operator/(T d) const { return P(x/d, y/d); }
T dot(P p) const { return x*p.x + y*p.y; }
T cross(P p) const { return x*p.y - y*p.x; }
T cross(P a, P b) const { return (a-* this).cross(b-* this); }
T dist2() const { return x*x + y*y; }
double dist() const { return sqrt((double)dist2()); }
// angle to x−axis in interval [−pi , pi ]
double angle() const { return atan2(y, x); }
P unit() const { return * this/dist(); } // makes d i s t ()=1
P perp() const { return P(-y, x); } // rotates +90 degrees
P normal() const { return perp().unit(); }
// returns point rotated ’a ’ radians ccw around the origin
P rotate(double a) const {
return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
};
typedef Point<double> P;

const int R = 1024;
vector <P> dr[2 * R + 5], vecz;
int pot;

inline ll det(PII &a, PII &b)
{
	return (ll)a.e1 * b.e2 - (ll)a.e2 * b.e1;
}

inline ll area(PII &a, PII &b, PII &c)
{
	return det(a, b) + det(b, c) + det(c, a);
}

typedef vector <int> vi;
pair<vi, vi> ulHull(const vector<P>& S) {
vi Q(sz(S)), U, L;
iota(all(Q), 0);
sort(all(Q), [&S](int a, int b){ return S[a] < S[b]; });
trav(it, Q) {
#define ADDP(C, cmp) while (sz(C) > 1 && S[C[sz(C)-2]].cross(S[it], S[C.back()]) cmp 0) C.pop_back(); C.push_back(it);
ADDP(U, <=); ADDP(L, >=);
}
return {U, L};
}

vi convexHull(const vector<P>& S) {
vi u, l; tie(u, l) = ulHull(S);
if (sz(S) <= 1) return u;
if (S[u[0]] == S[u[1]]) return {0};
l.insert(l.end(), u.rbegin()+1, u.rend()-1);
return l;
}

vector <P> makeHull(vector <P> &poly) {
	vector <P> hull;
	vector <int> hl = convexHull(poly);
	trav(i, hl) hull.pb(poly[i]);
	return hull;
}

void solve(vector <P> vec, int zbior)
{
	vector <P> hull = makeHull(vec);
	dr[zbior + pot] = hull;
}

#define MAX_SIZE 1000
const double PI = 2.0*acos(0.0);
const double EPS = 1e-9; //too small/big?????
struct PT
{
double x,y;
double length() {return sqrt(x*x+y*y);}
int normalize()
// normalize the vector to unit length; return -1 if the vector is 0
{
double l = length();
if(fabs(l)<EPS) return -1;
x/=l; y/=l;
return 0;
}
PT operator-(PT a)
{
PT r;
r.x=x-a.x; r.y=y-a.y;
return r;
}
PT operator+(PT a)
{
PT r;
r.x=x+a.x; r.y=y+a.y;
return r;
}
PT operator*(double sc)
{
PT r;
r.x=x*sc; r.y=y*sc;
return r;
}
};
bool operator<(const PT& a,const PT& b)
{
if(fabs(a.x-b.x)<EPS) return a.y<b.y;
return a.x<b.x;
}
double dist(PT& a, PT& b)
// the distance between two points
{
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
double dot(PT& a, PT& b)
// the inner product of two vectors
{
return(a.x*b.x+a.y*b.y);
}
int sideSign(PT& p1,PT& p2,PT& p3)
// which side is p3 to the line p1->p2? returns: 1 left, 0 on, -1 right
{
double sg = (p1.x-p3.x)*(p2.y-p3.y)-(p1.y - p3.y)*(p2.x-p3.x);
if(fabs(sg)<EPS) return 0;
if(sg>0)return 1;
return -1;
}
bool better(PT& p1,PT& p2,PT& p3)
// used by convec hull: from p3, if p1 is better than p2
{
double sg = (p1.y - p3.y)*(p2.x-p3.x)-(p1.x-p3.x)*(p2.y-p3.y);
//watch range of the numbers
if(fabs(sg)<EPS)
{
if(dist(p3,p1)>dist(p3,p2))return true;
else return false;
}
if(sg<0) return true;
return false;
}
//convex hull nlogn
void vex2(vector<PT> vin,vector<PT>& vout)
// vin is not pass by reference, since we will rotate it
{
vout.clear();
int n=vin.size();
sort(vin.begin(),vin.end());
PT stk[MAX_SIZE];
int pstk, i;
// hopefully more than 2 points
stk[0] = vin[0];
stk[1] = vin[1];
pstk = 2;
for(i=2; i<n; i++)
{
if(dist(vin[i], vin[i-1])<EPS) continue;
while(pstk > 1 && better(vin[i], stk[pstk-1], stk[pstk-2]))
pstk--;
stk[pstk] = vin[i];
pstk++;
}
for(i=0; i<pstk; i++) vout.push_back(stk[i]);
// turn 180 degree
for(i=0; i<n; i++)
{
vin[i].y = -vin[i].y;
vin[i].x = -vin[i].x;
}
sort(vin.begin(), vin.end());
stk[0] = vin[0];
stk[1] = vin[1];
pstk = 2;
for(i=2; i<n; i++)
{
if(dist(vin[i], vin[i-1])<EPS) continue;
while(pstk > 1 && better(vin[i], stk[pstk-1], stk[pstk-2]))
pstk--;
stk[pstk] = vin[i];
pstk++;
}
for(i=1; i<pstk-1; i++)
{
stk[i].x= -stk[i].x; // don’t forget rotate 180 d back.
stk[i].y= -stk[i].y;
vout.push_back(stk[i]);
}
}

double trap(PT a, PT b)
{
return (0.5*(b.x - a.x)*(b.y + a.y));
}

double triarea(PT a, PT b, PT c)
{
return fabs(trap(a,b)+trap(b,c)+trap(c,a));
}

int pAndSeg(PT& p1, PT& p2, PT& p)
// the relation of the point p and the segment p1->p2.
// 1 if point is on the segment; 0 if not on the line; -1 if on the line but not on the segment
{
double s=triarea(p, p1, p2);
if(s>EPS) return(0);
double sg=(p.x-p1.x)*(p.x-p2.x);
if(sg>EPS) return(-1);
sg=(p.y-p1.y)*(p.y-p2.y);
if(sg>EPS) return(-1);
return(1);
}

void rotate(PT p0, PT p1, double a, PT& r)
// rotate p1 around p0 clockwise, by angle a
// don’t pass by reference for p1, so r and p1 can be the same
{
p1 = p1-p0;
r.x = cos(a)*p1.x-sin(a)*p1.y;
r.y = sin(a)*p1.x+cos(a)*p1.y;
r = r+p0;
}

int pAndPoly(vector<PT> pv, PT p)
// the relation of the point and the simple polygon
// 1 if p is in pv; 0 outside; -1 on the polygon
{
int i, j;
int n=pv.size();
pv.push_back(pv[0]);
for(i=0;i<n;i++)
if(pAndSeg(pv[i], pv[i+1], p)==1) return(-1);
for(i=0;i<n;i++)
pv[i] = pv[i]-p;
p.x=p.y=0.0;
double a, y;
while(1)
{
a=(double)rand()/10000.00;
j=0;
for(i=0;i<n;i++)
{
rotate(p, pv[i], a, pv[i]);
if(fabs(pv[i].x)<EPS) j=1;
}
if(j==0)
{
pv[n]=pv[0];
j=0;
for(i=0;i<n;i++) if(pv[i].x*pv[i+1].x < -EPS)
{
y=pv[i+1].y-pv[i+1].x*(pv[i].y-pv[i+1].y)/(pv[i].x-pv[i+1].x);
if(y>0) j++;
}
return(j%2);
}
}
return 1;
}

int intersection( PT p1, PT p2, PT p3, PT p4, PT &r )
// two lines given by p1->p2, p3->p4 r is the intersection point
// return -1 if two lines are parallel
{
double d = (p4.y - p3.y)*(p2.x-p1.x) - (p4.x - p3.x)*(p2.y - p1.y);
if( fabs( d ) < EPS ) return -1;
// might need to do something special!!!
double ua, ub;
ua = (p4.x - p3.x)*(p1.y-p3.y) - (p4.y-p3.y)*(p1.x-p3.x);
ua /= d;
//  ub = (p2.x - p1.x)*(p1.y-p3.y) - (p2.y-p1.y)*(p1.x-p3.x);
//ub /= d;
r = p1 + (p2-p1)*ua;
return 0;
}

int PInterP(vector<PT>& p1, vector<PT>& p2, vector<PT>& p3)
{
vector<PT> pts;
PT pp;
pts.clear();
int m=p1.size();
int n=p2.size();
int i, j;
for(i=0;i<m;i++)
if(pAndPoly(p2, p1[i])!=0) pts.push_back(p1[i]);
for(i=0;i<n;i++)
if(pAndPoly(p1, p2[i])!=0) pts.push_back(p2[i]);
if(m>1 && n>1)
for(i=0;i<m;i++)
for(j=0;j<n;j++)
if(intersection(p1[i], p1[(i+1)%m], p2[j], p2[(j+1)%n], pp)==0)
{
//cout<<i<<" "<<j<<" -> "<<pp.x<<" "<<pp.y<<endl;
if(pAndSeg(p1[i], p1[(i+1)%m], pp)!=1) continue;
if(pAndSeg(p2[j], p2[(j+1)%n], pp)!=1) continue;
pts.push_back(pp);
}
if(pts.size()<=1)
{
p3.resize(1);
p3[0].x=p3[0].y=0.0;
return(1);
}
//show(pts);
vex2(pts, p3); // or vex
return(0);
}

void lineIntersection(const P& s1, const P& e1, const P& s2, const P& e2, P& r) {
		if ((e1-s1).cross(e2-s2)) { // i f not p a r a l l e l l
		r = s2-(e2-s2)*(e1-s1).cross(s2-s1)/(e1-s1).cross(e2-s2);
	}
}

vector<P> polygonCut(const vector<P> poly, P s, P e) {
	vector<P> res;
	rep(i,0,sz(poly)) {
		P cur = poly[i], prev = i ? poly[i-1] : poly.back();
		bool side = s.cross(e, cur) < 0;
		if (side != (s.cross(e, prev) < 0)) {
			res.emplace_back();
			lineIntersection(s, e, cur, prev, res.back());
		}
		if (side)
			res.push_back(cur);
	}
	return res;
}

vector <P> intersect(vector <P> poly2, vector <P> poly1) {
	vector <PT> a, b, c;
	PT help;
	for (auto u : poly1) {
		help.x = u.x;
		help.y = u.y;
		a.pb(help);
	}
	
	for (auto u : poly2) {
		help.x = u.x;
		help.y = u.y;
		b.pb(help);
	}
	PInterP(a, b, c);
	vector <P> nowe;
	for (auto u : c) nowe.pb(P(u.x, u.y));
	return nowe;
}



long double polygonArea2(vector<P>& v) {
	if (v.size() <= 2) return 0.0;
	long double a = v.back().cross(v[0]);
	rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
	return a;
}

int main()
{
	cin >> n;
	assert(n <= 10);
	FOR(i, 1, n) cin >> tab[i].e1 >> tab[i].e2 >> hub[i].e1 >> hub[i].e2;
	pot = (1 << n);
	for (int i=0; i<pot; ++i)
	{
		vecz.clear();
		for (int j=0; j<n; ++j)
			if (i & (1 << j)) vecz.pb(P(tab[j + 1].e1, tab[j + 1].e2));
			else vecz.pb(P(hub[j + 1].e1, hub[j + 1].e2));
		solve(vecz, i);
	}
	
	for (int i = pot - 1; i > 0; --i) dr[i] = intersect(dr[2 * i], dr[2 * i + 1]);
	/*for (auto u : intersect(dr[pot], dr[2 * pot - 1])) cout << u.x << ' ' << u.y << endl;
	cout << endl;
	FOR(i, 1, 2 * pot - 1) cout << dr[i].size() <<' ';
	cout << endl;
	FOR(i, 0, 2) cout << dr[2 * pot - 1][i].x << ' ' << dr[2 * pot - 1][i].y << endl;
	* */
	long double wyn = polygonArea2(dr[1]);
	wyn = abs(wyn) * 0.5;
	cout << fixed;
	cout << setprecision(13);
	cout << wyn;
}