/* * w programie urzyłem bezczelnie (choć legalnie) kodu ogólnie dostępnego, znajdującego się pod tym linkiem * https://github.com/mareksom/acmlib/blob/master/code/kamil/halfplanes.cpp */ #include <bits/stdc++.h> #define f first #define s second #define LL long long #define ALL(V) V.begin(),V.end() #define boost ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0) #define endl "\n" #define debug(x) cerr<<#x<<": "<<x<<endl #define FOR(i,a,b) for(int i = (a); i <= (b); i++) #define REP(i,n) FOR(i, 0, (int)n - 1) #define PII pair<int,int> #define SZ(x) ((int)(x).size()) #define LD long double using namespace std; const LL N=1e6+69, base=1024*1024,mod=1e9+7; // halfplanes_online #define X real() #define Y imag() typedef complex<LL> P; struct line { LL a,b,c; line(LL a_ = 0, LL b_ = 0, LL c_ = 0): a(a_), b(b_), c(c_) {} // <= 10^9 line (P const &A, P const &B): a(A.Y-B.Y), b(B.X-A.X), c(A.X*B.Y-A.Y*B.X) {} //pts <= 10^6 line operator - () const {return line(-a, -b, -c); } bool up() const { return a?(a<0):(b>0);} }; inline LL wek(line const &a, line const &b) {return a.a*b.b-a.b*b.a;} inline bool rown(line a, line b) {return wek(a,b) == 0;} inline bool pokr(line a, line b) {return rown(a,b) && a.a*b.c == b.a*a.c && a.b*b.c == b.b*a.c;} inline bool podobne(line a, line b) {return rown(a,b) && a.up() == b.up();} inline complex<LD> prosta_prosta(line a, line b) { LL det = wek(a,b); LL x = -a.c*b.b+b.c*a.b; LL y = -a.a*b.c+a.c*b.a; return complex<LD>(x,y)/(LD)det; } inline LL weaker (line a, line b) { // czy a jest slabsze niz b assert(rown(a,b)); if (abs(a.a) > abs(a.b)) return a.c*abs(b.a) - b.c*abs(a.a); else return a.c*abs(b.b) - b.c*abs(a.b); } struct Comp { bool operator()(const line& a, const line& b) const { if (a.up() != b.up()) return a.up() > b.up(); return wek(a,b) > 0; } }; const LD EPS = 1e-12; struct przeciecie_polplaszczyzn { bool empty, pek; set<line, Comp> S; typedef set<line, Comp>::iterator iter; przeciecie_polplaszczyzn() : empty(false), pek(false) {}; iter next(iter it){return (++it == S.end() ? S.begin() : it);} iter prev(iter it){return (it == S.begin() ? --S.end() : --it);} bool hide(line a, line b, line c) { if (rown(a,b)) { if (weaker(a, -b) < 0) empty = true; return false; } if (wek(a,b) < 0) swap(a,b); complex<LD> r = prosta_prosta(a,b); LD v = r.X * c.a + r.Y * c.b + c.c; if (wek(a,c) >=0 && wek(c,b) >=0 && v > -EPS) return true; if (wek(a,c) < 0 && wek(c,b) < 0) { if (v < -EPS) empty = true; else if (v < EPS) pek = true; } return false; } void add(line l) { if (empty) return; if (l.a == 0 && l.b == 0) { if (l.c < 0) empty = true; return; } iter it = S.lower_bound(l); //rownolegle if(it != S.end() && podobne(*it, l)) { if (weaker(l, *it)>=0) return; iter del = it; it = next(it); S.erase(del); } //*it>p if(SZ(S) >= 2 && it == S.end()) it = S.begin(); while(SZ(S) >= 2 && hide(l, *next(it), *it)) { iter del = it; it = next(it); S.erase(del); } //*it<p if(SZ(S) >= 2) it = prev(it); while(SZ(S) >= 2 && hide(l, *prev(it), *it)) { iter del = it; it = prev(it); S.erase(del); } if(S.size() < 2 || !hide(*it, *next(it), l)) S.insert(l); } /* 0 - puste 1 - punkt 2 - odcinek 3 - półprosta 4 - prosta 5 - dodatnie (może nieskończone) pole (S.size() daje wowczas liczbę boków) */ int type() { if(empty) return 0; if(SZ(S) <= 4){ vector<line> res(ALL(S)); if (SZ(res) == 2 && rown(res[0], res[1]) && weaker(res[0], -res[1])<0) return 0; REP(i, SZ(res)) REP(j, i) if(pokr(res[i], res[j])) { if(SZ(res) == 2) return 4; if(SZ(res) == 3) return 3; if(SZ(res) == 4 && pokr(res[0], res[2]) && pokr(res[1], res[3])) return 1; return 2; } if(SZ(res) == 3 && pek) return 1; } return 5; } vector <line> oddawaj() { vector <line> re; for(auto v:S) { re.push_back(v); } return re; } long double kurwa_moje_pole() { long double re=0; for(auto it=S.begin();it!=S.end();it++) { line u = (*it); complex<LD> a = prosta_prosta(u, (*next(it))); complex<LD> b = prosta_prosta(u, (*prev(it))); long double ile=(a.X-b.X)*fabs(a.Y+b.Y)/2; re+=ile; } return fabs(re); } }; przeciecie_polplaszczyzn S; vector <pair<pair<int,int>,pair<int,int>>> vek; vector <line> huj; int n; int wektor(pair<int,int> a, pair<int,int> b, pair<int,int> c) { b.f -= a.f; b.s -= a.s; c.f -= a.f; c.s -= a.s; return b.f * c.s - c.f * b.s; } void is_correct(pair<int,int> a, pair<int,int> b) { if(a==b) return; for(int i=0;i<vek.size();i++) { int w1=wektor(a,b,vek[i].f); int w2=wektor(a,b,vek[i].s); if(w1>0 && w2>0) return; } P a1 = {a.f,a.s}; P b1 = {b.f,b.s}; S.add({b1,a1}); } void check_lines(int a,int b) { pair<int,int> a1 = vek[a].f; pair<int,int> a2 = vek[a].s; pair<int,int> b1 = vek[b].f; pair<int,int> b2 = vek[b].s; is_correct(a1, a2); is_correct(a1, b1); is_correct(a1, b2); is_correct(a2, b1); is_correct(a2, b2); is_correct(b1, b2); } int32_t main(void) { cin>>n; for(int i=0;i<n;i++) { int a,b,c,d; cin>>a>>b>>c>>d; b+=1000; d+=1000; vek.push_back({{a,b},{c,d}}); } for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { check_lines(i,j); } } if(S.type()!=5) { long double odp=0; printf("%.15LF\n", odp); return 0; } long double odpowiedz=S.kurwa_moje_pole(); printf("%.15LF\n", odpowiedz); }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 | /* * w programie urzyłem bezczelnie (choć legalnie) kodu ogólnie dostępnego, znajdującego się pod tym linkiem * https://github.com/mareksom/acmlib/blob/master/code/kamil/halfplanes.cpp */ #include <bits/stdc++.h> #define f first #define s second #define LL long long #define ALL(V) V.begin(),V.end() #define boost ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0) #define endl "\n" #define debug(x) cerr<<#x<<": "<<x<<endl #define FOR(i,a,b) for(int i = (a); i <= (b); i++) #define REP(i,n) FOR(i, 0, (int)n - 1) #define PII pair<int,int> #define SZ(x) ((int)(x).size()) #define LD long double using namespace std; const LL N=1e6+69, base=1024*1024,mod=1e9+7; // halfplanes_online #define X real() #define Y imag() typedef complex<LL> P; struct line { LL a,b,c; line(LL a_ = 0, LL b_ = 0, LL c_ = 0): a(a_), b(b_), c(c_) {} // <= 10^9 line (P const &A, P const &B): a(A.Y-B.Y), b(B.X-A.X), c(A.X*B.Y-A.Y*B.X) {} //pts <= 10^6 line operator - () const {return line(-a, -b, -c); } bool up() const { return a?(a<0):(b>0);} }; inline LL wek(line const &a, line const &b) {return a.a*b.b-a.b*b.a;} inline bool rown(line a, line b) {return wek(a,b) == 0;} inline bool pokr(line a, line b) {return rown(a,b) && a.a*b.c == b.a*a.c && a.b*b.c == b.b*a.c;} inline bool podobne(line a, line b) {return rown(a,b) && a.up() == b.up();} inline complex<LD> prosta_prosta(line a, line b) { LL det = wek(a,b); LL x = -a.c*b.b+b.c*a.b; LL y = -a.a*b.c+a.c*b.a; return complex<LD>(x,y)/(LD)det; } inline LL weaker (line a, line b) { // czy a jest slabsze niz b assert(rown(a,b)); if (abs(a.a) > abs(a.b)) return a.c*abs(b.a) - b.c*abs(a.a); else return a.c*abs(b.b) - b.c*abs(a.b); } struct Comp { bool operator()(const line& a, const line& b) const { if (a.up() != b.up()) return a.up() > b.up(); return wek(a,b) > 0; } }; const LD EPS = 1e-12; struct przeciecie_polplaszczyzn { bool empty, pek; set<line, Comp> S; typedef set<line, Comp>::iterator iter; przeciecie_polplaszczyzn() : empty(false), pek(false) {}; iter next(iter it){return (++it == S.end() ? S.begin() : it);} iter prev(iter it){return (it == S.begin() ? --S.end() : --it);} bool hide(line a, line b, line c) { if (rown(a,b)) { if (weaker(a, -b) < 0) empty = true; return false; } if (wek(a,b) < 0) swap(a,b); complex<LD> r = prosta_prosta(a,b); LD v = r.X * c.a + r.Y * c.b + c.c; if (wek(a,c) >=0 && wek(c,b) >=0 && v > -EPS) return true; if (wek(a,c) < 0 && wek(c,b) < 0) { if (v < -EPS) empty = true; else if (v < EPS) pek = true; } return false; } void add(line l) { if (empty) return; if (l.a == 0 && l.b == 0) { if (l.c < 0) empty = true; return; } iter it = S.lower_bound(l); //rownolegle if(it != S.end() && podobne(*it, l)) { if (weaker(l, *it)>=0) return; iter del = it; it = next(it); S.erase(del); } //*it>p if(SZ(S) >= 2 && it == S.end()) it = S.begin(); while(SZ(S) >= 2 && hide(l, *next(it), *it)) { iter del = it; it = next(it); S.erase(del); } //*it<p if(SZ(S) >= 2) it = prev(it); while(SZ(S) >= 2 && hide(l, *prev(it), *it)) { iter del = it; it = prev(it); S.erase(del); } if(S.size() < 2 || !hide(*it, *next(it), l)) S.insert(l); } /* 0 - puste 1 - punkt 2 - odcinek 3 - półprosta 4 - prosta 5 - dodatnie (może nieskończone) pole (S.size() daje wowczas liczbę boków) */ int type() { if(empty) return 0; if(SZ(S) <= 4){ vector<line> res(ALL(S)); if (SZ(res) == 2 && rown(res[0], res[1]) && weaker(res[0], -res[1])<0) return 0; REP(i, SZ(res)) REP(j, i) if(pokr(res[i], res[j])) { if(SZ(res) == 2) return 4; if(SZ(res) == 3) return 3; if(SZ(res) == 4 && pokr(res[0], res[2]) && pokr(res[1], res[3])) return 1; return 2; } if(SZ(res) == 3 && pek) return 1; } return 5; } vector <line> oddawaj() { vector <line> re; for(auto v:S) { re.push_back(v); } return re; } long double kurwa_moje_pole() { long double re=0; for(auto it=S.begin();it!=S.end();it++) { line u = (*it); complex<LD> a = prosta_prosta(u, (*next(it))); complex<LD> b = prosta_prosta(u, (*prev(it))); long double ile=(a.X-b.X)*fabs(a.Y+b.Y)/2; re+=ile; } return fabs(re); } }; przeciecie_polplaszczyzn S; vector <pair<pair<int,int>,pair<int,int>>> vek; vector <line> huj; int n; int wektor(pair<int,int> a, pair<int,int> b, pair<int,int> c) { b.f -= a.f; b.s -= a.s; c.f -= a.f; c.s -= a.s; return b.f * c.s - c.f * b.s; } void is_correct(pair<int,int> a, pair<int,int> b) { if(a==b) return; for(int i=0;i<vek.size();i++) { int w1=wektor(a,b,vek[i].f); int w2=wektor(a,b,vek[i].s); if(w1>0 && w2>0) return; } P a1 = {a.f,a.s}; P b1 = {b.f,b.s}; S.add({b1,a1}); } void check_lines(int a,int b) { pair<int,int> a1 = vek[a].f; pair<int,int> a2 = vek[a].s; pair<int,int> b1 = vek[b].f; pair<int,int> b2 = vek[b].s; is_correct(a1, a2); is_correct(a1, b1); is_correct(a1, b2); is_correct(a2, b1); is_correct(a2, b2); is_correct(b1, b2); } int32_t main(void) { cin>>n; for(int i=0;i<n;i++) { int a,b,c,d; cin>>a>>b>>c>>d; b+=1000; d+=1000; vek.push_back({{a,b},{c,d}}); } for(int i=0;i<n;i++) { for(int j=0;j<n;j++) { check_lines(i,j); } } if(S.type()!=5) { long double odp=0; printf("%.15LF\n", odp); return 0; } long double odpowiedz=S.kurwa_moje_pole(); printf("%.15LF\n", odpowiedz); } |