#include <bits/stdc++.h> using namespace std; #define REP(i,a,b) for (int i = (a); i <= (b); ++i) #define REPD(i,a,b) for (int i = (a); i >= (b); --i) #define FORI(i,n) REP(i,1,n) #define FOR(i,n) REP(i,0,int(n)-1) #define mp make_pair #define pb push_back #define pii pair<int,int> #define vi vector<int> #define ll long long #define SZ(x) int((x).size()) #define DBG(v) cerr << #v << " = " << (v) << endl; #define FOREACH(i,t) for (typeof(t.begin()) i=t.begin(); i!=t.end(); i++) #define fi first #define se second #define real long double //albo long double const real eps=1e-9; inline bool iszero(real x){return x<=eps && x>=-eps;} struct pt { real x,y; pt(real xx=0,real yy=0):x(xx),y(yy){} bool operator==(pt &a){return iszero(a.x-x) && iszero(a.y-y);} }; bool operator<(const pt &a, const pt &b) { if (a.x!=b.x) return a.x<b.x; return a.y<b.y; } ostream& operator<<(ostream &s,pt p) {return s<<"("<<p.x<<","<<p.y<<")";} pt operator+(pt a,pt b){return pt(a.x+b.x,a.y+b.y);} pt operator-(pt a,pt b){return pt(a.x-b.x,a.y-b.y);} pt operator*(pt a,real r){return pt(a.x*r,a.y*r);} real vec(pt a,pt b){return a.x*b.y-a.y*b.x;} real det(pt a,pt b,pt c){return vec(b-a,c-a);} bool left(pt a, pt b, pt c) { return det(a,b,c) > 0; } pt operator*(pt a,pt b){return pt(a.x*b.x-a.y*b.y,b.x*a.y+b.y*a.x);} real sqabs(pt a){return a.x*a.x+a.y*a.y;} pt operator/(pt a,pt b) {return (a*pt(b.x,-b.y))/sqabs(b);} real abs(pt a){return sqrt(a.x*a.x+a.y*a.y);} real dist(pt a,pt b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));} real sqdist(pt a,pt b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);} real arg(pt a){return atan2(a.y,a.x);}//z przedzialu [-pi,pi] real skal(pt a,pt b){return a.x*b.x+a.y*b.y;} // odleglosc A od prostej BC real dist(pt a,pt b,pt c){return abs(det(b,c,a))/dist(b,c);} //dlugosc (ze znakiem) rzutu A na prosta B real dlrzut(pt a,pt b){return skal(a,b)/abs(b);} pt rzut(pt a,pt b,pt c) { //rzut punktu A na prosta BC pt d=c-b; return b+d*(skal(a-b,d)/sqabs(d)); } bool insegment(pt a,pt b,pt c) { //A nalezy do BC if (iszero(det(a,b,c))) if (min(b.x,c.x)-eps<=a.x && a.x-eps<=max(b.x,c.x)) if (min(b.y,c.y)-eps<=a.y && a.y-eps<=max(b.y,c.y)) return 1; return 0; } bool przecinanie(pt a,pt b,pt c,pt d) { //czy przeciecie AB CD niepuste real d1=vec(b-a,c-a),d2=vec(b-a,d-a); if ((d1>eps && d2>eps) || (d1<-eps && d2<-eps)) return 0; if (iszero(d1) && iszero(d2)) { if (iszero(a.x-b.x) && iszero(c.x-d.x)) { a=a*pt(0,1);b=b*pt(0,1);c=c*pt(0,1);d=d*pt(0,1); } if (a.x>b.x) swap(a,b); if (c.x>d.x) swap(c,d); if (a.x<c.x+eps && c.x<b.x+eps) return 1; if (a.x<d.x+eps && d.x<b.x+eps) return 1; if (c.x<a.x+eps && a.x<d.x+eps) return 1; return 0; } d1=vec(d-c,a-c),d2=vec(d-c,b-c); if ((d1>eps && d2>eps) || (d1<-eps && d2<-eps)) return 0; return 1; } //przeciecie w dokl 1 punkcie ktory nie jest koncem bool przecinanie_wl(pt a,pt b,pt c,pt d) { real d1=vec(b-a,c-a),d2=vec(b-a,d-a); if (!(d1>eps && d2<-eps) && !(d1<-eps && d2>eps)) return 0; d1=vec(d-c,a-c),d2=vec(d-c,b-c); if (!(d1>eps && d2<-eps) && !(d1<-eps && d2>eps)) return 0; return 1; } int line_cross(pt a, pt b,pt c,pt d,pt& wyn) { // 0 brak, 1 przec, 2 pokrywaja real pczw=vec(b-a,c-d); if (iszero(pczw)) { if (iszero(det(a,b,c))) return 2; else return 0; } real ptr=vec(b-a,c-a); wyn=c+(d-c)*(ptr/pczw); return 1; } vector<pt> circle_cross(pt c1,real c1r,pt c2,real c2r) { vector<pt> wyn; real d=sqabs(c2-c1), r1=c1r*c1r/d, r2=c2r*c2r/d; pt u=c1*((r2-r1+1)*0.5)+c2*((r1-r2+1)*0.5); if (r1>r2) swap(r1,r2); real a=(r1-r2+1)*0.5; a*=a; if (a>=r1+eps) return wyn; if (a>r1-eps) {wyn.pb(u);return wyn;} pt v(c2-c1); v=pt(-v.y,v.x); real h=sqrt(r1-a); wyn.pb(u+v*h); wyn.pb(u-v*h); return wyn; } vector<pt> circle_line_cross(pt c,real cr,pt a,pt b) { vector<pt> r; pt d=rzut(c,a,b); real X=dist(c,d); if (iszero(X-cr)){r.pb(d);return r;}//1 pkt if (X>cr) return r;//prosta za daleko real Y=sqrt(cr*cr-X*X); pt K=b-a; K=K*(Y/abs(K)); r.pb(d+K);r.pb(d-K); return r; } bool circle_3points(pt a,pt b,pt c,pt &sr,real &r) { pt sym1[2],sym2[2]; sym1[0]=(a+b)*0.5;sym1[1]=sym1[0]+(b-a)*pt(0,10.0); sym2[0]=(b+c)*0.5;sym2[1]=sym2[0]+(c-b)*pt(0,10.0); pt srodek; if (line_cross(sym1[0],sym1[1],sym2[0],sym2[1],sr)!=1) return 0; r=dist(sr,a); return 1; } //czy nalezy do wnetrza, jesli jest na brzegu to undefined behaviour bool inpoly(pt a, vector<pt> &pol) { pt b(3e8+500.0,4e6+77777.0); int pr=0; FOR(i,SZ(pol)) pr+=przecinanie_wl(a,b,pol[i],pol[(i+1)%SZ(pol)]); return pr%2; } bool onborder(pt a, vector<pt> &pol) { //czy nalezy do brzegu FOR(i,SZ(pol)) if (insegment(a,pol[i],pol[(i+1)%SZ(pol)])) return 1; return 0; } //w srodku lub na brzegu, uzywac dla real=ll bool PointInConvexPol(vector<pt>& l, pt p) { int a = 1, b = SZ(l)-1, c; if (det(l[0], l[a], l[b]) > 0) swap(a,b); if (det(l[0], l[a], p) > 0 || det(l[0], l[b], p) < 0) return 0; while(abs(a-b) > 1) { c = (a+b)/2; if (det(l[0], l[c], p) > 0) b = c; else a = c; } return det(l[a], l[b], p) <= 0; } //we wnetrzu bez brzegu, uzywac dla real=ll bool PointInsideConvexPol(vector<pt>& l, pt p) { int a = 1, b = SZ(l)-1, c; if (det(l[0], l[a], l[b]) > 0) swap(a,b); if (det(l[0], l[a], p) >= 0 || det(l[0], l[b], p) <= 0) return 0; while(abs(a-b) > 1) { c = (a+b)/2; if (det(l[0], l[c], p) > 0) b = c; else a = c; } return det(l[a], l[b], p) < 0; } real pole(vector<pt> &po) { // dla arg. całkowitych wynik jest półcałkowity real pole=0.0; int dl=SZ(po); FOR(i,dl) pole+=po[i].x*po[(i+1)%dl].y-po[(i+1)%dl].x*po[i].y; return fabs(pole)/2.0; } //przeciecie wypuklego wielokata p i polplaszczyzny {x:det(a,b,x)<=0} vector<pt> poly_halfplane(vector<pt> p,pt a,pt b) { //zlozonosc O(|p|) int n=SZ(p); if (!n) return p; p.pb(p[0]); vector<pt> wyn; vector<int> side(n+1); pt cross; FOR(i,n+1) { side[i]=(det(a,b,p[i])>=-eps); }//printf("[%d %.2le %.1lf %.1lf, %.1lf %.1lf, %.1lf %.1lf]\n", side[i], det(a,b,p[i]), a.x, a.y, b.x, b.y, p[i].x, p[i].y); } printf("\n"); FOR(i,n) { if (side[i]==1) { wyn.pb(p[i]); if (side[i+1]==0 && line_cross(p[i],p[i+1],a,b,cross)==1 && !(cross==p[i])) wyn.pb(cross); } if (side[i]==0 && side[i+1]==1 && line_cross(p[i],p[i+1],a,b,cross)==1 && !(cross==p[i+1])) wyn.pb(cross); } return wyn; } const int N = 111; int n; pt t[N][2]; vector<pair<pt,pt>> hp; int main() { scanf("%d", &n); FOR(i,n) scanf("%Lf%Lf%Lf%Lf", &t[i][0].x, &t[i][0].y, &t[i][1].x, &t[i][1].y); FOR(i,n) FOR(j,n) if (i!=j) { FOR(a,2) FOR(b,2) { pt A = t[i][a], B = t[j][b]; if (left(B, A, t[i][1-a])) continue; //if (left(B, A, t[j][1-b])) continue; bool bad = 0; FOR(k,n) if (k!=i) { if (left(A, B, t[k][0]) && left(A, B, t[k][1])) { bad = 1; break; } } if (bad) continue; hp.pb(mp(A, B)); } } //FOR(i,SZ(hp)) printf("%.1lf %.1lf -- %.1lf %.1lf\n", hp[i].fi.x, hp[i].fi.y, hp[i].se.x, hp[i].se.y); int m = SZ(hp); vector<pt> poly; poly.pb(pt(-1000, -1000)); poly.pb(pt(-1000, 1000)); poly.pb(pt(1000, 1000)); poly.pb(pt(1000, -1000)); FOR(i,m) { poly = poly_halfplane(poly, hp[i].se, hp[i].fi); //printf("\nafter %d, poly=\n", i); //FOR(i,SZ(poly)) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y); } //FOR(i,SZ(poly)) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y); printf("%.13Lf\n", pole(poly)); return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | #include <bits/stdc++.h> using namespace std; #define REP(i,a,b) for (int i = (a); i <= (b); ++i) #define REPD(i,a,b) for (int i = (a); i >= (b); --i) #define FORI(i,n) REP(i,1,n) #define FOR(i,n) REP(i,0,int(n)-1) #define mp make_pair #define pb push_back #define pii pair<int,int> #define vi vector<int> #define ll long long #define SZ(x) int((x).size()) #define DBG(v) cerr << #v << " = " << (v) << endl; #define FOREACH(i,t) for (typeof(t.begin()) i=t.begin(); i!=t.end(); i++) #define fi first #define se second #define real long double //albo long double const real eps=1e-9; inline bool iszero(real x){return x<=eps && x>=-eps;} struct pt { real x,y; pt(real xx=0,real yy=0):x(xx),y(yy){} bool operator==(pt &a){return iszero(a.x-x) && iszero(a.y-y);} }; bool operator<(const pt &a, const pt &b) { if (a.x!=b.x) return a.x<b.x; return a.y<b.y; } ostream& operator<<(ostream &s,pt p) {return s<<"("<<p.x<<","<<p.y<<")";} pt operator+(pt a,pt b){return pt(a.x+b.x,a.y+b.y);} pt operator-(pt a,pt b){return pt(a.x-b.x,a.y-b.y);} pt operator*(pt a,real r){return pt(a.x*r,a.y*r);} real vec(pt a,pt b){return a.x*b.y-a.y*b.x;} real det(pt a,pt b,pt c){return vec(b-a,c-a);} bool left(pt a, pt b, pt c) { return det(a,b,c) > 0; } pt operator*(pt a,pt b){return pt(a.x*b.x-a.y*b.y,b.x*a.y+b.y*a.x);} real sqabs(pt a){return a.x*a.x+a.y*a.y;} pt operator/(pt a,pt b) {return (a*pt(b.x,-b.y))/sqabs(b);} real abs(pt a){return sqrt(a.x*a.x+a.y*a.y);} real dist(pt a,pt b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));} real sqdist(pt a,pt b){return (a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);} real arg(pt a){return atan2(a.y,a.x);}//z przedzialu [-pi,pi] real skal(pt a,pt b){return a.x*b.x+a.y*b.y;} // odleglosc A od prostej BC real dist(pt a,pt b,pt c){return abs(det(b,c,a))/dist(b,c);} //dlugosc (ze znakiem) rzutu A na prosta B real dlrzut(pt a,pt b){return skal(a,b)/abs(b);} pt rzut(pt a,pt b,pt c) { //rzut punktu A na prosta BC pt d=c-b; return b+d*(skal(a-b,d)/sqabs(d)); } bool insegment(pt a,pt b,pt c) { //A nalezy do BC if (iszero(det(a,b,c))) if (min(b.x,c.x)-eps<=a.x && a.x-eps<=max(b.x,c.x)) if (min(b.y,c.y)-eps<=a.y && a.y-eps<=max(b.y,c.y)) return 1; return 0; } bool przecinanie(pt a,pt b,pt c,pt d) { //czy przeciecie AB CD niepuste real d1=vec(b-a,c-a),d2=vec(b-a,d-a); if ((d1>eps && d2>eps) || (d1<-eps && d2<-eps)) return 0; if (iszero(d1) && iszero(d2)) { if (iszero(a.x-b.x) && iszero(c.x-d.x)) { a=a*pt(0,1);b=b*pt(0,1);c=c*pt(0,1);d=d*pt(0,1); } if (a.x>b.x) swap(a,b); if (c.x>d.x) swap(c,d); if (a.x<c.x+eps && c.x<b.x+eps) return 1; if (a.x<d.x+eps && d.x<b.x+eps) return 1; if (c.x<a.x+eps && a.x<d.x+eps) return 1; return 0; } d1=vec(d-c,a-c),d2=vec(d-c,b-c); if ((d1>eps && d2>eps) || (d1<-eps && d2<-eps)) return 0; return 1; } //przeciecie w dokl 1 punkcie ktory nie jest koncem bool przecinanie_wl(pt a,pt b,pt c,pt d) { real d1=vec(b-a,c-a),d2=vec(b-a,d-a); if (!(d1>eps && d2<-eps) && !(d1<-eps && d2>eps)) return 0; d1=vec(d-c,a-c),d2=vec(d-c,b-c); if (!(d1>eps && d2<-eps) && !(d1<-eps && d2>eps)) return 0; return 1; } int line_cross(pt a, pt b,pt c,pt d,pt& wyn) { // 0 brak, 1 przec, 2 pokrywaja real pczw=vec(b-a,c-d); if (iszero(pczw)) { if (iszero(det(a,b,c))) return 2; else return 0; } real ptr=vec(b-a,c-a); wyn=c+(d-c)*(ptr/pczw); return 1; } vector<pt> circle_cross(pt c1,real c1r,pt c2,real c2r) { vector<pt> wyn; real d=sqabs(c2-c1), r1=c1r*c1r/d, r2=c2r*c2r/d; pt u=c1*((r2-r1+1)*0.5)+c2*((r1-r2+1)*0.5); if (r1>r2) swap(r1,r2); real a=(r1-r2+1)*0.5; a*=a; if (a>=r1+eps) return wyn; if (a>r1-eps) {wyn.pb(u);return wyn;} pt v(c2-c1); v=pt(-v.y,v.x); real h=sqrt(r1-a); wyn.pb(u+v*h); wyn.pb(u-v*h); return wyn; } vector<pt> circle_line_cross(pt c,real cr,pt a,pt b) { vector<pt> r; pt d=rzut(c,a,b); real X=dist(c,d); if (iszero(X-cr)){r.pb(d);return r;}//1 pkt if (X>cr) return r;//prosta za daleko real Y=sqrt(cr*cr-X*X); pt K=b-a; K=K*(Y/abs(K)); r.pb(d+K);r.pb(d-K); return r; } bool circle_3points(pt a,pt b,pt c,pt &sr,real &r) { pt sym1[2],sym2[2]; sym1[0]=(a+b)*0.5;sym1[1]=sym1[0]+(b-a)*pt(0,10.0); sym2[0]=(b+c)*0.5;sym2[1]=sym2[0]+(c-b)*pt(0,10.0); pt srodek; if (line_cross(sym1[0],sym1[1],sym2[0],sym2[1],sr)!=1) return 0; r=dist(sr,a); return 1; } //czy nalezy do wnetrza, jesli jest na brzegu to undefined behaviour bool inpoly(pt a, vector<pt> &pol) { pt b(3e8+500.0,4e6+77777.0); int pr=0; FOR(i,SZ(pol)) pr+=przecinanie_wl(a,b,pol[i],pol[(i+1)%SZ(pol)]); return pr%2; } bool onborder(pt a, vector<pt> &pol) { //czy nalezy do brzegu FOR(i,SZ(pol)) if (insegment(a,pol[i],pol[(i+1)%SZ(pol)])) return 1; return 0; } //w srodku lub na brzegu, uzywac dla real=ll bool PointInConvexPol(vector<pt>& l, pt p) { int a = 1, b = SZ(l)-1, c; if (det(l[0], l[a], l[b]) > 0) swap(a,b); if (det(l[0], l[a], p) > 0 || det(l[0], l[b], p) < 0) return 0; while(abs(a-b) > 1) { c = (a+b)/2; if (det(l[0], l[c], p) > 0) b = c; else a = c; } return det(l[a], l[b], p) <= 0; } //we wnetrzu bez brzegu, uzywac dla real=ll bool PointInsideConvexPol(vector<pt>& l, pt p) { int a = 1, b = SZ(l)-1, c; if (det(l[0], l[a], l[b]) > 0) swap(a,b); if (det(l[0], l[a], p) >= 0 || det(l[0], l[b], p) <= 0) return 0; while(abs(a-b) > 1) { c = (a+b)/2; if (det(l[0], l[c], p) > 0) b = c; else a = c; } return det(l[a], l[b], p) < 0; } real pole(vector<pt> &po) { // dla arg. całkowitych wynik jest półcałkowity real pole=0.0; int dl=SZ(po); FOR(i,dl) pole+=po[i].x*po[(i+1)%dl].y-po[(i+1)%dl].x*po[i].y; return fabs(pole)/2.0; } //przeciecie wypuklego wielokata p i polplaszczyzny {x:det(a,b,x)<=0} vector<pt> poly_halfplane(vector<pt> p,pt a,pt b) { //zlozonosc O(|p|) int n=SZ(p); if (!n) return p; p.pb(p[0]); vector<pt> wyn; vector<int> side(n+1); pt cross; FOR(i,n+1) { side[i]=(det(a,b,p[i])>=-eps); }//printf("[%d %.2le %.1lf %.1lf, %.1lf %.1lf, %.1lf %.1lf]\n", side[i], det(a,b,p[i]), a.x, a.y, b.x, b.y, p[i].x, p[i].y); } printf("\n"); FOR(i,n) { if (side[i]==1) { wyn.pb(p[i]); if (side[i+1]==0 && line_cross(p[i],p[i+1],a,b,cross)==1 && !(cross==p[i])) wyn.pb(cross); } if (side[i]==0 && side[i+1]==1 && line_cross(p[i],p[i+1],a,b,cross)==1 && !(cross==p[i+1])) wyn.pb(cross); } return wyn; } const int N = 111; int n; pt t[N][2]; vector<pair<pt,pt>> hp; int main() { scanf("%d", &n); FOR(i,n) scanf("%Lf%Lf%Lf%Lf", &t[i][0].x, &t[i][0].y, &t[i][1].x, &t[i][1].y); FOR(i,n) FOR(j,n) if (i!=j) { FOR(a,2) FOR(b,2) { pt A = t[i][a], B = t[j][b]; if (left(B, A, t[i][1-a])) continue; //if (left(B, A, t[j][1-b])) continue; bool bad = 0; FOR(k,n) if (k!=i) { if (left(A, B, t[k][0]) && left(A, B, t[k][1])) { bad = 1; break; } } if (bad) continue; hp.pb(mp(A, B)); } } //FOR(i,SZ(hp)) printf("%.1lf %.1lf -- %.1lf %.1lf\n", hp[i].fi.x, hp[i].fi.y, hp[i].se.x, hp[i].se.y); int m = SZ(hp); vector<pt> poly; poly.pb(pt(-1000, -1000)); poly.pb(pt(-1000, 1000)); poly.pb(pt(1000, 1000)); poly.pb(pt(1000, -1000)); FOR(i,m) { poly = poly_halfplane(poly, hp[i].se, hp[i].fi); //printf("\nafter %d, poly=\n", i); //FOR(i,SZ(poly)) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y); } //FOR(i,SZ(poly)) printf("%.4lf %.4lf\n", poly[i].x, poly[i].y); printf("%.13Lf\n", pole(poly)); return 0; } |