#include <iostream> using namespace std; /* n - liczba liter w ciągu 1 <= n <= 2 * 10^7 Dostępna pamięć 4MB ~= 4 * 10^6 B. Gdybyśmy wczytali wszystkie litery, każdą na jednym bajcie, to sama struktura będzie pięciokrotnie większa niż dostępna pamięć. Do sprawdzenia palindromu wystarczy nam wczytanie połowy ciągu, ale na to nadal potrzebujemy 2,5 raza więcej pamięci. Nie mam innego pomysłu niż jakaś kompresja danych - u mnie niestety stratna. Zastosowałem tutaj cztery podejścia do rozpoznawania: * dla krótkich tekstów znanej długości, po prostu czytam połowę tekstu, a wczytując drugą połowę sprawdzam czy się zgadza z tą wczytaną, * dla długich tekstów znanej długości liczę sumę kontrolną tekstu i zapamiętuję ją (oraz litery) w wybranych punktach, a czytając drugą połowę sprawdzam, czy zapamiętane sumy kontrolne i litery się zgadzają (przy odpowiednich danych testowych odpowie TAK, choć ciągi nie będą palindromami), * dla krótkich tekstów nieznanej długości po wczytaniu tekstu, porównuję go od końca z początkiem, * dla długich (krótkich, które w trakcie wczytywania stały się długimi) tekstów nieznanej długości, zapamiętuję sumę kontrolną i litery w wybranych punktach i na wybranych odcinkach - przy nieznanej długości same punkty ustawione w stałych odstępach rozminęły by się. */ bool isPalindromForKnownShort(long n) { long halfN = n / 2; char s[halfN]; for (long i = 0; i < halfN; ++i) { cin >> s[i]; } char c; if (n % 2 != 0) { cin >> c; } for (long i = halfN - 1; i >= 0; --i) { cin >> c; if (c != s[i]) { return false; } } return true; } /* heurystyka: z pierwszej połowy biorę co któryś element i zapamiętuję go, a dla pozostałych liczę tylko sumę kontrolną; dla drugiej połowy sprawdzam zgodność zapamiętanych elementów i policzonych sum */ bool isPalindromForKnownLong(long n) { const long JUMP = 20; long halfN = n / 2; long jumps = (halfN - 100) / JUMP; long middle = halfN - (JUMP * jumps); char sm[middle]; char sj[jumps]; char xj[jumps]; char c; for (long j = 0; j < jumps; ++j) { cin >> c; char x = c; sj[j] = c; for (long i = 1; i < JUMP; ++i) { cin >> c; x ^= c; } xj[j] = x; } for (long i = 0; i < middle; ++i) { cin >> sm[i]; } if (n % 2 != 0) { cin >> c; } for (long i = middle - 1; i >= 0; --i) { cin >> c; if (c != sm[i]) { return false; } } for (long j = jumps - 1; j >= 0; --j) { char x = 0; for (long i = 0; i < JUMP; ++i) { cin >> c; x ^= c; } if (c != sj[j] || x != xj[j]) { return false; } } return true; } bool isPalindromForKnownLength(long n) { if (n < 4000000) { return isPalindromForKnownShort(n); } else { return isPalindromForKnownLong(n); } } bool isPalindromForUnknownLength() { const long LIMIT = 500000; char s[LIMIT]; bool limitReached = false; char c; long i = 0; while(cin >> c) { if (c == '\n') { break; } s[i] = c; ++i; if (i == LIMIT) { limitReached = true; break; } } if (!limitReached) { long j = 0; --i; while (j < i) { if (s[i] != s[j]) { return false; } ++j; --i; } return true; } const long JUMP = 40; const long BIG_JUMP = JUMP * JUMP; char x[LIMIT]; char sd[LIMIT]; char xd[LIMIT]; long ii = 0; char xsum = 0; long tempIndex; while (ii < i) { c = s[ii]; xsum ^= c; if (ii % JUMP == 0) { tempIndex = ii / JUMP; s[tempIndex] = c; x[tempIndex] = xsum; } if ((ii % BIG_JUMP) < JUMP) { tempIndex = (ii / BIG_JUMP) * JUMP + (ii % BIG_JUMP); sd[tempIndex] = c; xd[tempIndex] = xsum; } ++ii; } while(cin >> c) { if (c == '\n') { break; } xsum ^= c; if (i % JUMP == 0) { tempIndex = i / JUMP; s[tempIndex] = c; x[tempIndex] = xsum; } if ((i % BIG_JUMP) < JUMP) { tempIndex = (i / BIG_JUMP) * JUMP + (i % BIG_JUMP); sd[tempIndex] = c; xd[tempIndex] = xsum; } ++i; } if (i % 2 == 0 && xsum != 0) { // palindrom parzysty musi mieć sumę XOR równą 0 return false; } long j = 0; --i; bool knownI; bool knownPI; bool knownJ; char si; char xpi; char sj; char xj; while (j < i) { knownI = false; knownPI = false; knownJ = false; if (i % JUMP == 0) { knownI = true; tempIndex = i / JUMP; si = s[tempIndex]; } if (i % BIG_JUMP < JUMP) { knownI = true; tempIndex = (i / BIG_JUMP) * JUMP + (i % BIG_JUMP); si = sd[tempIndex]; } if ((i-1) % JUMP == 0) { knownPI = true; tempIndex = (i-1) / JUMP; xpi = (x[tempIndex] ^ xsum); } if ((i-1) % BIG_JUMP < JUMP) { knownPI = true; tempIndex = ((i-1) / BIG_JUMP) * JUMP + ((i-1) % BIG_JUMP); xpi = (xd[tempIndex] ^xsum); } if (j % JUMP == 0) { knownJ = true; tempIndex = j / JUMP; sj = s[tempIndex]; xj = x[tempIndex]; } if (j % BIG_JUMP < JUMP) { knownJ = true; tempIndex = (j / BIG_JUMP) * JUMP + (j % BIG_JUMP); sj = sd[tempIndex]; xj = xd[tempIndex]; } if (knownJ) { if (knownI) { if (sj != si) { return false; } } if (knownPI) { if (xj != xpi) { return false; } } } ++j; --i; } return true; } int main() { long n; cin >> n; bool isPalindrom; if (n > 0) { isPalindrom = isPalindromForKnownLength(n); } else { isPalindrom = isPalindromForUnknownLength(); } if (isPalindrom) { cout << "TAK" << endl; } else { cout << "NIE" << endl; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 | #include <iostream> using namespace std; /* n - liczba liter w ciągu 1 <= n <= 2 * 10^7 Dostępna pamięć 4MB ~= 4 * 10^6 B. Gdybyśmy wczytali wszystkie litery, każdą na jednym bajcie, to sama struktura będzie pięciokrotnie większa niż dostępna pamięć. Do sprawdzenia palindromu wystarczy nam wczytanie połowy ciągu, ale na to nadal potrzebujemy 2,5 raza więcej pamięci. Nie mam innego pomysłu niż jakaś kompresja danych - u mnie niestety stratna. Zastosowałem tutaj cztery podejścia do rozpoznawania: * dla krótkich tekstów znanej długości, po prostu czytam połowę tekstu, a wczytując drugą połowę sprawdzam czy się zgadza z tą wczytaną, * dla długich tekstów znanej długości liczę sumę kontrolną tekstu i zapamiętuję ją (oraz litery) w wybranych punktach, a czytając drugą połowę sprawdzam, czy zapamiętane sumy kontrolne i litery się zgadzają (przy odpowiednich danych testowych odpowie TAK, choć ciągi nie będą palindromami), * dla krótkich tekstów nieznanej długości po wczytaniu tekstu, porównuję go od końca z początkiem, * dla długich (krótkich, które w trakcie wczytywania stały się długimi) tekstów nieznanej długości, zapamiętuję sumę kontrolną i litery w wybranych punktach i na wybranych odcinkach - przy nieznanej długości same punkty ustawione w stałych odstępach rozminęły by się. */ bool isPalindromForKnownShort(long n) { long halfN = n / 2; char s[halfN]; for (long i = 0; i < halfN; ++i) { cin >> s[i]; } char c; if (n % 2 != 0) { cin >> c; } for (long i = halfN - 1; i >= 0; --i) { cin >> c; if (c != s[i]) { return false; } } return true; } /* heurystyka: z pierwszej połowy biorę co któryś element i zapamiętuję go, a dla pozostałych liczę tylko sumę kontrolną; dla drugiej połowy sprawdzam zgodność zapamiętanych elementów i policzonych sum */ bool isPalindromForKnownLong(long n) { const long JUMP = 20; long halfN = n / 2; long jumps = (halfN - 100) / JUMP; long middle = halfN - (JUMP * jumps); char sm[middle]; char sj[jumps]; char xj[jumps]; char c; for (long j = 0; j < jumps; ++j) { cin >> c; char x = c; sj[j] = c; for (long i = 1; i < JUMP; ++i) { cin >> c; x ^= c; } xj[j] = x; } for (long i = 0; i < middle; ++i) { cin >> sm[i]; } if (n % 2 != 0) { cin >> c; } for (long i = middle - 1; i >= 0; --i) { cin >> c; if (c != sm[i]) { return false; } } for (long j = jumps - 1; j >= 0; --j) { char x = 0; for (long i = 0; i < JUMP; ++i) { cin >> c; x ^= c; } if (c != sj[j] || x != xj[j]) { return false; } } return true; } bool isPalindromForKnownLength(long n) { if (n < 4000000) { return isPalindromForKnownShort(n); } else { return isPalindromForKnownLong(n); } } bool isPalindromForUnknownLength() { const long LIMIT = 500000; char s[LIMIT]; bool limitReached = false; char c; long i = 0; while(cin >> c) { if (c == '\n') { break; } s[i] = c; ++i; if (i == LIMIT) { limitReached = true; break; } } if (!limitReached) { long j = 0; --i; while (j < i) { if (s[i] != s[j]) { return false; } ++j; --i; } return true; } const long JUMP = 40; const long BIG_JUMP = JUMP * JUMP; char x[LIMIT]; char sd[LIMIT]; char xd[LIMIT]; long ii = 0; char xsum = 0; long tempIndex; while (ii < i) { c = s[ii]; xsum ^= c; if (ii % JUMP == 0) { tempIndex = ii / JUMP; s[tempIndex] = c; x[tempIndex] = xsum; } if ((ii % BIG_JUMP) < JUMP) { tempIndex = (ii / BIG_JUMP) * JUMP + (ii % BIG_JUMP); sd[tempIndex] = c; xd[tempIndex] = xsum; } ++ii; } while(cin >> c) { if (c == '\n') { break; } xsum ^= c; if (i % JUMP == 0) { tempIndex = i / JUMP; s[tempIndex] = c; x[tempIndex] = xsum; } if ((i % BIG_JUMP) < JUMP) { tempIndex = (i / BIG_JUMP) * JUMP + (i % BIG_JUMP); sd[tempIndex] = c; xd[tempIndex] = xsum; } ++i; } if (i % 2 == 0 && xsum != 0) { // palindrom parzysty musi mieć sumę XOR równą 0 return false; } long j = 0; --i; bool knownI; bool knownPI; bool knownJ; char si; char xpi; char sj; char xj; while (j < i) { knownI = false; knownPI = false; knownJ = false; if (i % JUMP == 0) { knownI = true; tempIndex = i / JUMP; si = s[tempIndex]; } if (i % BIG_JUMP < JUMP) { knownI = true; tempIndex = (i / BIG_JUMP) * JUMP + (i % BIG_JUMP); si = sd[tempIndex]; } if ((i-1) % JUMP == 0) { knownPI = true; tempIndex = (i-1) / JUMP; xpi = (x[tempIndex] ^ xsum); } if ((i-1) % BIG_JUMP < JUMP) { knownPI = true; tempIndex = ((i-1) / BIG_JUMP) * JUMP + ((i-1) % BIG_JUMP); xpi = (xd[tempIndex] ^xsum); } if (j % JUMP == 0) { knownJ = true; tempIndex = j / JUMP; sj = s[tempIndex]; xj = x[tempIndex]; } if (j % BIG_JUMP < JUMP) { knownJ = true; tempIndex = (j / BIG_JUMP) * JUMP + (j % BIG_JUMP); sj = sd[tempIndex]; xj = xd[tempIndex]; } if (knownJ) { if (knownI) { if (sj != si) { return false; } } if (knownPI) { if (xj != xpi) { return false; } } } ++j; --i; } return true; } int main() { long n; cin >> n; bool isPalindrom; if (n > 0) { isPalindrom = isPalindromForKnownLength(n); } else { isPalindrom = isPalindromForUnknownLength(); } if (isPalindrom) { cout << "TAK" << endl; } else { cout << "NIE" << endl; } return 0; } |