// C program to Count // Inversions in an array // using Merge Sort #include <bits/stdc++.h> #include <cstdio> #include <vector> #include "teatr.h" #include "message.h" #include <cmath> unsigned long long int _mergeSort(int arr[], int temp[], int left, int right); unsigned long long int merge(int arr[], int temp[], int left, int mid, int right); /* This function sorts the input array and returns the number of inversions in the array */ unsigned long long int mergeSort(int arr[], int array_size) { int* temp = (int*)malloc(sizeof(int) * array_size); return _mergeSort(arr, temp, 0, array_size - 1); } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ unsigned long long int _mergeSort(int arr[], int temp[], int left, int right) { int mid; unsigned long long int inv_count = 0; if (right > left) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (right + left) / 2; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1, right); /*Merge the two parts*/ inv_count += merge(arr, temp, left, mid + 1, right); } return inv_count; } /* This funt merges two sorted arrays and returns inversion count in the arrays.*/ unsigned long long int merge(int arr[], int temp[], int left, int mid, int right) { int i, j, k; unsigned long long int inv_count = 0; i = left; /* i is index for left subarray*/ j = mid; /* j is index for right subarray*/ k = left; /* k is index for resultant merged subarray*/ while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; /*this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid - i); } } /* Copy the remaining elements of left subarray (if there are any) to temp*/ while (i <= mid - 1) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /*Copy back the merged elements to original array*/ for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } int widownia[1000000]; /* Driver program to test above functions */ int main(int argv, char** args) { int n; if(MyNodeId()==0) { n=GetN(); for(int i=0;i<n;i++) { widownia[i]=GetElement(i); } printf("%llu\n", mergeSort(widownia, n)); return 0; } return 0; }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 | // C program to Count // Inversions in an array // using Merge Sort #include <bits/stdc++.h> #include <cstdio> #include <vector> #include "teatr.h" #include "message.h" #include <cmath> unsigned long long int _mergeSort(int arr[], int temp[], int left, int right); unsigned long long int merge(int arr[], int temp[], int left, int mid, int right); /* This function sorts the input array and returns the number of inversions in the array */ unsigned long long int mergeSort(int arr[], int array_size) { int* temp = (int*)malloc(sizeof(int) * array_size); return _mergeSort(arr, temp, 0, array_size - 1); } /* An auxiliary recursive function that sorts the input array and returns the number of inversions in the array. */ unsigned long long int _mergeSort(int arr[], int temp[], int left, int right) { int mid; unsigned long long int inv_count = 0; if (right > left) { /* Divide the array into two parts and call _mergeSortAndCountInv() for each of the parts */ mid = (right + left) / 2; /* Inversion count will be sum of inversions in left-part, right-part and number of inversions in merging */ inv_count = _mergeSort(arr, temp, left, mid); inv_count += _mergeSort(arr, temp, mid + 1, right); /*Merge the two parts*/ inv_count += merge(arr, temp, left, mid + 1, right); } return inv_count; } /* This funt merges two sorted arrays and returns inversion count in the arrays.*/ unsigned long long int merge(int arr[], int temp[], int left, int mid, int right) { int i, j, k; unsigned long long int inv_count = 0; i = left; /* i is index for left subarray*/ j = mid; /* j is index for right subarray*/ k = left; /* k is index for resultant merged subarray*/ while ((i <= mid - 1) && (j <= right)) { if (arr[i] <= arr[j]) { temp[k++] = arr[i++]; } else { temp[k++] = arr[j++]; /*this is tricky -- see above explanation/diagram for merge()*/ inv_count = inv_count + (mid - i); } } /* Copy the remaining elements of left subarray (if there are any) to temp*/ while (i <= mid - 1) temp[k++] = arr[i++]; /* Copy the remaining elements of right subarray (if there are any) to temp*/ while (j <= right) temp[k++] = arr[j++]; /*Copy back the merged elements to original array*/ for (i = left; i <= right; i++) arr[i] = temp[i]; return inv_count; } int widownia[1000000]; /* Driver program to test above functions */ int main(int argv, char** args) { int n; if(MyNodeId()==0) { n=GetN(); for(int i=0;i<n;i++) { widownia[i]=GetElement(i); } printf("%llu\n", mergeSort(widownia, n)); return 0; } return 0; } |