1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
// libdivide.h
// Copyright 2010 - 2018 ridiculous_fish
//
// libdivide is dual-licensed under the Boost or zlib licenses.
// You may use libdivide under the terms of either of these.
// See LICENSE.txt for more details.

#ifndef LIBDIVIDE_H
#define LIBDIVIDE_H

#if defined(_MSC_VER)
// disable warning C4146: unary minus operator applied to
// unsigned type, result still unsigned
#pragma warning(disable: 4146)
#define LIBDIVIDE_VC
#endif

#ifdef __cplusplus
#include <cstdlib>
#include <cstdio>
#else
#include <stdlib.h>
#include <stdio.h>
#endif

#include <stdint.h>

#if defined(LIBDIVIDE_USE_SSE2)
#include <emmintrin.h>
#endif

#if defined(LIBDIVIDE_VC)
#include <intrin.h>
#endif

#ifndef __has_builtin
#define __has_builtin(x) 0 // Compatibility with non-clang compilers.
#endif

#if defined(__SIZEOF_INT128__)
#define HAS_INT128_T
#endif

#if defined(__x86_64__) || defined(_WIN64) || defined(_M_X64)
#define LIBDIVIDE_IS_X86_64
#endif

#if defined(__i386__)
#define LIBDIVIDE_IS_i386
#endif

#if defined(__GNUC__) || defined(__clang__)
#define LIBDIVIDE_GCC_STYLE_ASM
#endif

#if defined(__cplusplus) || defined(LIBDIVIDE_VC)
#define LIBDIVIDE_FUNCTION __FUNCTION__
#else
#define LIBDIVIDE_FUNCTION __func__
#endif

#define LIBDIVIDE_ERROR(msg) \
    do { \
        fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", \
            __LINE__, LIBDIVIDE_FUNCTION, msg); \
        exit(-1); \
    } while (0)

#if defined(LIBDIVIDE_ASSERTIONS_ON)
#define LIBDIVIDE_ASSERT(x) \
    do { \
        if (!(x)) { \
            fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", \
                __LINE__, LIBDIVIDE_FUNCTION, #x); \
            exit(-1); \
        } \
    } while (0)
#else
#define LIBDIVIDE_ASSERT(x)
#endif

// libdivide may use the pmuldq (vector signed 32x32->64 mult instruction)
// which is in SSE 4.1. However, signed multiplication can be emulated
// efficiently with unsigned multiplication, and SSE 4.1 is currently rare, so
// it is OK to not turn this on.
#ifdef LIBDIVIDE_USE_SSE4_1
#include <smmintrin.h>
#endif

#ifdef __cplusplus
// We place libdivide within the libdivide namespace, and that goes in an
// anonymous namespace so that the functions are only visible to files that
// #include this header and don't get external linkage. At least that's the
// theory.
namespace {
namespace libdivide {
#endif

// Explanation of "more" field: bit 6 is whether to use shift path. If we are
// using the shift path, bit 7 is whether the divisor is negative in the signed
// case; in the unsigned case it is 0. Bits 0-4 is shift value (for shift
// path or mult path).  In 32 bit case, bit 5 is always 0. We use bit 7 as the
// "negative divisor indicator" so that we can use sign extension to
// efficiently go to a full-width -1.
//
// u32: [0-4] shift value
//      [5] ignored
//      [6] add indicator
//      [7] shift path
//
// s32: [0-4] shift value
//      [5] shift path
//      [6] add indicator
//      [7] indicates negative divisor
//
// u64: [0-5] shift value
//      [6] add indicator
//      [7] shift path
//
// s64: [0-5] shift value
//      [6] add indicator
//      [7] indicates negative divisor
//      magic number of 0 indicates shift path (we ran out of bits!)
//
// In s32 and s64 branchfree modes, the magic number is negated according to
// whether the divisor is negated. In branchfree strategy, it is not negated.

enum {
    LIBDIVIDE_32_SHIFT_MASK = 0x1F,
    LIBDIVIDE_64_SHIFT_MASK = 0x3F,
    LIBDIVIDE_ADD_MARKER = 0x40,
    LIBDIVIDE_U32_SHIFT_PATH = 0x80,
    LIBDIVIDE_U64_SHIFT_PATH = 0x80,
    LIBDIVIDE_S32_SHIFT_PATH = 0x20,
    LIBDIVIDE_NEGATIVE_DIVISOR = 0x80
};

// pack divider structs to prevent compilers from padding.
// This reduces memory usage by up to 43% when using a large
// array of libdivide dividers and improves performance
// by up to 10% because of reduced memory bandwidth.
#pragma pack(push, 1)

struct libdivide_u32_t {
    uint32_t magic;
    uint8_t more;
};

struct libdivide_s32_t {
    int32_t magic;
    uint8_t more;
};

struct libdivide_u64_t {
    uint64_t magic;
    uint8_t more;
};

struct libdivide_s64_t {
    int64_t magic;
    uint8_t more;
};

struct libdivide_u32_branchfree_t {
    uint32_t magic;
    uint8_t more;
};

struct libdivide_s32_branchfree_t {
    int32_t magic;
    uint8_t more;
};

struct libdivide_u64_branchfree_t {
    uint64_t magic;
    uint8_t more;
};

struct libdivide_s64_branchfree_t {
    int64_t magic;
    uint8_t more;
};

#pragma pack(pop)

#ifndef LIBDIVIDE_API
    #ifdef __cplusplus
        // In C++, we don't want our public functions to be static, because
        // they are arguments to templates and static functions can't do that.
        // They get internal linkage through virtue of the anonymous namespace.
        // In C, they should be static.
        #define LIBDIVIDE_API
    #else
        #define LIBDIVIDE_API static inline
    #endif
#endif

LIBDIVIDE_API struct libdivide_s32_t libdivide_s32_gen(int32_t y);
LIBDIVIDE_API struct libdivide_u32_t libdivide_u32_gen(uint32_t y);
LIBDIVIDE_API struct libdivide_s64_t libdivide_s64_gen(int64_t y);
LIBDIVIDE_API struct libdivide_u64_t libdivide_u64_gen(uint64_t y);

LIBDIVIDE_API struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t y);
LIBDIVIDE_API struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t y);
LIBDIVIDE_API struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t y);
LIBDIVIDE_API struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t y);

LIBDIVIDE_API int32_t  libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom);
LIBDIVIDE_API int64_t  libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_do(uint64_t y, const struct libdivide_u64_t *denom);

LIBDIVIDE_API int32_t  libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom);
LIBDIVIDE_API int64_t  libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_branchfree_do(uint64_t y, const struct libdivide_u64_branchfree_t *denom);

LIBDIVIDE_API int32_t  libdivide_s32_recover(const struct libdivide_s32_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom);
LIBDIVIDE_API int64_t  libdivide_s64_recover(const struct libdivide_s64_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom);

LIBDIVIDE_API int32_t  libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom);
LIBDIVIDE_API int64_t  libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom);

LIBDIVIDE_API int libdivide_u32_get_algorithm(const struct libdivide_u32_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_do_alg0(uint32_t numer, const struct libdivide_u32_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_do_alg1(uint32_t numer, const struct libdivide_u32_t *denom);
LIBDIVIDE_API uint32_t libdivide_u32_do_alg2(uint32_t numer, const struct libdivide_u32_t *denom);

LIBDIVIDE_API int libdivide_u64_get_algorithm(const struct libdivide_u64_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_do_alg0(uint64_t numer, const struct libdivide_u64_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_do_alg1(uint64_t numer, const struct libdivide_u64_t *denom);
LIBDIVIDE_API uint64_t libdivide_u64_do_alg2(uint64_t numer, const struct libdivide_u64_t *denom);

LIBDIVIDE_API int libdivide_s32_get_algorithm(const struct libdivide_s32_t *denom);
LIBDIVIDE_API int32_t libdivide_s32_do_alg0(int32_t numer, const struct libdivide_s32_t *denom);
LIBDIVIDE_API int32_t libdivide_s32_do_alg1(int32_t numer, const struct libdivide_s32_t *denom);
LIBDIVIDE_API int32_t libdivide_s32_do_alg2(int32_t numer, const struct libdivide_s32_t *denom);
LIBDIVIDE_API int32_t libdivide_s32_do_alg3(int32_t numer, const struct libdivide_s32_t *denom);
LIBDIVIDE_API int32_t libdivide_s32_do_alg4(int32_t numer, const struct libdivide_s32_t *denom);

LIBDIVIDE_API int libdivide_s64_get_algorithm(const struct libdivide_s64_t *denom);
LIBDIVIDE_API int64_t libdivide_s64_do_alg0(int64_t numer, const struct libdivide_s64_t *denom);
LIBDIVIDE_API int64_t libdivide_s64_do_alg1(int64_t numer, const struct libdivide_s64_t *denom);
LIBDIVIDE_API int64_t libdivide_s64_do_alg2(int64_t numer, const struct libdivide_s64_t *denom);
LIBDIVIDE_API int64_t libdivide_s64_do_alg3(int64_t numer, const struct libdivide_s64_t *denom);
LIBDIVIDE_API int64_t libdivide_s64_do_alg4(int64_t numer, const struct libdivide_s64_t *denom);

#if defined(LIBDIVIDE_USE_SSE2)

LIBDIVIDE_API __m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom);
LIBDIVIDE_API __m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom);
LIBDIVIDE_API __m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom);
LIBDIVIDE_API __m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom);

LIBDIVIDE_API __m128i libdivide_u32_do_vector_alg0(__m128i numers, const struct libdivide_u32_t *denom);
LIBDIVIDE_API __m128i libdivide_u32_do_vector_alg1(__m128i numers, const struct libdivide_u32_t *denom);
LIBDIVIDE_API __m128i libdivide_u32_do_vector_alg2(__m128i numers, const struct libdivide_u32_t *denom);

LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg0(__m128i numers, const struct libdivide_s32_t *denom);
LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg1(__m128i numers, const struct libdivide_s32_t *denom);
LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg2(__m128i numers, const struct libdivide_s32_t *denom);
LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg3(__m128i numers, const struct libdivide_s32_t *denom);
LIBDIVIDE_API __m128i libdivide_s32_do_vector_alg4(__m128i numers, const struct libdivide_s32_t *denom);

LIBDIVIDE_API __m128i libdivide_u64_do_vector_alg0(__m128i numers, const struct libdivide_u64_t *denom);
LIBDIVIDE_API __m128i libdivide_u64_do_vector_alg1(__m128i numers, const struct libdivide_u64_t *denom);
LIBDIVIDE_API __m128i libdivide_u64_do_vector_alg2(__m128i numers, const struct libdivide_u64_t *denom);

LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg0(__m128i numers, const struct libdivide_s64_t *denom);
LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg1(__m128i numers, const struct libdivide_s64_t *denom);
LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg2(__m128i numers, const struct libdivide_s64_t *denom);
LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg3(__m128i numers, const struct libdivide_s64_t *denom);
LIBDIVIDE_API __m128i libdivide_s64_do_vector_alg4(__m128i numers, const struct libdivide_s64_t *denom);

LIBDIVIDE_API __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom);
LIBDIVIDE_API __m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom);
LIBDIVIDE_API __m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom);
LIBDIVIDE_API __m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom);

#endif

//////// Internal Utility Functions

static inline uint32_t libdivide__mullhi_u32(uint32_t x, uint32_t y) {
    uint64_t xl = x, yl = y;
    uint64_t rl = xl * yl;
    return (uint32_t)(rl >> 32);
}

static uint64_t libdivide__mullhi_u64(uint64_t x, uint64_t y) {
#if defined(LIBDIVIDE_VC) && defined(LIBDIVIDE_IS_X86_64)
    return __umulh(x, y);
#elif defined(HAS_INT128_T)
    __uint128_t xl = x, yl = y;
    __uint128_t rl = xl * yl;
    return (uint64_t)(rl >> 64);
#else
    // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
    uint32_t mask = 0xFFFFFFFF;
    uint32_t x0 = (uint32_t)(x & mask);
    uint32_t x1 = (uint32_t)(x >> 32);
    uint32_t y0 = (uint32_t)(y & mask);
    uint32_t y1 = (uint32_t)(y >> 32);
    uint32_t x0y0_hi = libdivide__mullhi_u32(x0, y0);
    uint64_t x0y1 = x0 * (uint64_t)y1;
    uint64_t x1y0 = x1 * (uint64_t)y0;
    uint64_t x1y1 = x1 * (uint64_t)y1;
    uint64_t temp = x1y0 + x0y0_hi;
    uint64_t temp_lo = temp & mask;
    uint64_t temp_hi = temp >> 32;

    return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32);
#endif
}

static inline int64_t libdivide__mullhi_s64(int64_t x, int64_t y) {
#if defined(LIBDIVIDE_VC) && defined(LIBDIVIDE_IS_X86_64)
    return __mulh(x, y);
#elif defined(HAS_INT128_T)
    __int128_t xl = x, yl = y;
    __int128_t rl = xl * yl;
    return (int64_t)(rl >> 64);
#else
    // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
    uint32_t mask = 0xFFFFFFFF;
    uint32_t x0 = (uint32_t)(x & mask);
    uint32_t y0 = (uint32_t)(y & mask);
    int32_t x1 = (int32_t)(x >> 32);
    int32_t y1 = (int32_t)(y >> 32);
    uint32_t x0y0_hi = libdivide__mullhi_u32(x0, y0);
    int64_t t = x1 * (int64_t)y0 + x0y0_hi;
    int64_t w1 = x0 * (int64_t)y1 + (t & mask);

    return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32);
#endif
}

#if defined(LIBDIVIDE_USE_SSE2)

static inline __m128i libdivide__u64_to_m128(uint64_t x) {
#if defined(LIBDIVIDE_VC) && !defined(_WIN64)
    // 64 bit windows doesn't seem to have an implementation of any of these
    // load intrinsics, and 32 bit Visual C++ crashes
    _declspec(align(16)) uint64_t temp[2] = {x, x};
    return _mm_load_si128((const __m128i*)temp);
#else
    // everyone else gets it right
    return _mm_set1_epi64x(x);
#endif
}

static inline __m128i libdivide_get_FFFFFFFF00000000(void) {
    // returns the same as _mm_set1_epi64(0xFFFFFFFF00000000ULL)
    // without touching memory.
    // optimizes to pcmpeqd on OS X
    __m128i result = _mm_set1_epi8(-1);
    return _mm_slli_epi64(result, 32);
}

static inline __m128i libdivide_get_00000000FFFFFFFF(void) {
    // returns the same as _mm_set1_epi64(0x00000000FFFFFFFFULL)
    // without touching memory.
    // optimizes to pcmpeqd on OS X
    __m128i result = _mm_set1_epi8(-1);
    result = _mm_srli_epi64(result, 32);
    return result;
}

static inline __m128i libdivide_s64_signbits(__m128i v) {
    // we want to compute v >> 63, that is, _mm_srai_epi64(v, 63). But there
    // is no 64 bit shift right arithmetic instruction in SSE2. So we have to
    // fake it by first duplicating the high 32 bit values, and then using a 32
    // bit shift. Another option would be to use _mm_srli_epi64(v, 63) and
    // then subtract that from 0, but that approach appears to be substantially
    // slower for unknown reasons
    __m128i hiBitsDuped = _mm_shuffle_epi32(v, _MM_SHUFFLE(3, 3, 1, 1));
    __m128i signBits = _mm_srai_epi32(hiBitsDuped, 31);
    return signBits;
}

// Returns an __m128i whose low 32 bits are equal to amt and has zero elsewhere.
static inline __m128i libdivide_u32_to_m128i(uint32_t amt) {
    return _mm_set_epi32(0, 0, 0, amt);
}

static inline __m128i libdivide_s64_shift_right_vector(__m128i v, int amt) {
    // implementation of _mm_sra_epi64. Here we have two 64 bit values which
    // are shifted right to logically become (64 - amt) values, and are then
    // sign extended from a (64 - amt) bit number.
    const int b = 64 - amt;
    __m128i m = libdivide__u64_to_m128(1ULL << (b - 1));
    __m128i x = _mm_srl_epi64(v, libdivide_u32_to_m128i(amt));
    __m128i result = _mm_sub_epi64(_mm_xor_si128(x, m), m); // result = x^m - m
    return result;
}

// Here, b is assumed to contain one 32 bit value repeated four times.
// If it did not, the function would not work.
static inline __m128i libdivide__mullhi_u32_flat_vector(__m128i a, __m128i b) {
    __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epu32(a, b), 32);
    __m128i a1X3X = _mm_srli_epi64(a, 32);
    __m128i mask = libdivide_get_FFFFFFFF00000000();
    __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epu32(a1X3X, b), mask);
    return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); // = hi_product_0123
}

// Here, y is assumed to contain one 64 bit value repeated twice.
static inline __m128i libdivide_mullhi_u64_flat_vector(__m128i x, __m128i y) {
    // full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
    __m128i mask = libdivide_get_00000000FFFFFFFF();
    // x0 is low half of 2 64 bit values, x1 is high half in low slots
    __m128i x0 = _mm_and_si128(x, mask);
    __m128i x1 = _mm_srli_epi64(x, 32);
    __m128i y0 = _mm_and_si128(y, mask);
    __m128i y1 = _mm_srli_epi64(y, 32);
    // x0 happens to have the low half of the two 64 bit values in 32 bit slots
    // 0 and 2, so _mm_mul_epu32 computes their full product, and then we shift
    // right by 32 to get just the high values
    __m128i x0y0_hi = _mm_srli_epi64(_mm_mul_epu32(x0, y0), 32);
    __m128i x0y1 = _mm_mul_epu32(x0, y1);
    __m128i x1y0 = _mm_mul_epu32(x1, y0);
    __m128i x1y1 = _mm_mul_epu32(x1, y1);
    __m128i temp = _mm_add_epi64(x1y0, x0y0_hi);
    __m128i temp_lo = _mm_and_si128(temp, mask);
    __m128i temp_hi = _mm_srli_epi64(temp, 32);
    temp_lo = _mm_srli_epi64(_mm_add_epi64(temp_lo, x0y1), 32);
    temp_hi = _mm_add_epi64(x1y1, temp_hi);

    return _mm_add_epi64(temp_lo, temp_hi);
}

// y is one 64 bit value repeated twice
static inline __m128i libdivide_mullhi_s64_flat_vector(__m128i x, __m128i y) {
    __m128i p = libdivide_mullhi_u64_flat_vector(x, y);
    __m128i t1 = _mm_and_si128(libdivide_s64_signbits(x), y);
    p = _mm_sub_epi64(p, t1);
    __m128i t2 = _mm_and_si128(libdivide_s64_signbits(y), x);
    p = _mm_sub_epi64(p, t2);
    return p;
}

#ifdef LIBDIVIDE_USE_SSE4_1

// b is one 32 bit value repeated four times.
static inline __m128i libdivide_mullhi_s32_flat_vector(__m128i a, __m128i b) {
    __m128i hi_product_0Z2Z = _mm_srli_epi64(_mm_mul_epi32(a, b), 32);
    __m128i a1X3X = _mm_srli_epi64(a, 32);
    __m128i mask = libdivide_get_FFFFFFFF00000000();
    __m128i hi_product_Z1Z3 = _mm_and_si128(_mm_mul_epi32(a1X3X, b), mask);
    return _mm_or_si128(hi_product_0Z2Z, hi_product_Z1Z3); // = hi_product_0123
}

#else

// SSE2 does not have a signed multiplication instruction, but we can convert
// unsigned to signed pretty efficiently. Again, b is just a 32 bit value
// repeated four times.
static inline __m128i libdivide_mullhi_s32_flat_vector(__m128i a, __m128i b) {
    __m128i p = libdivide__mullhi_u32_flat_vector(a, b);
    __m128i t1 = _mm_and_si128(_mm_srai_epi32(a, 31), b); // t1 = (a >> 31) & y, arithmetic shift
    __m128i t2 = _mm_and_si128(_mm_srai_epi32(b, 31), a);
    p = _mm_sub_epi32(p, t1);
    p = _mm_sub_epi32(p, t2);
    return p;
}

#endif // LIBDIVIDE_USE_SSE4_1

#endif // LIBDIVIDE_USE_SSE2

static inline int32_t libdivide__count_leading_zeros32(uint32_t val) {
#if defined(__GNUC__) || __has_builtin(__builtin_clz)
    // Fast way to count leading zeros
    return __builtin_clz(val);
#elif defined(LIBDIVIDE_VC)
    unsigned long result;
    if (_BitScanReverse(&result, val)) {
        return 31 - result;
    }
    return 0;
#else
  int32_t result = 0;
  uint32_t hi = 1U << 31;

  while (~val & hi) {
      hi >>= 1;
      result++;
  }
  return result;
#endif
}

static inline int32_t libdivide__count_leading_zeros64(uint64_t val) {
#if defined(__GNUC__) || __has_builtin(__builtin_clzll)
    // Fast way to count leading zeros
    return __builtin_clzll(val);
#elif defined(LIBDIVIDE_VC) && defined(_WIN64)
    unsigned long result;
    if (_BitScanReverse64(&result, val)) {
        return 63 - result;
    }
    return 0;
#else
    uint32_t hi = val >> 32;
    uint32_t lo = val & 0xFFFFFFFF;
    if (hi != 0) return libdivide__count_leading_zeros32(hi);
    return 32 + libdivide__count_leading_zeros32(lo);
#endif
}

#if (defined(LIBDIVIDE_IS_i386) || defined(LIBDIVIDE_IS_X86_64)) && \
     defined(LIBDIVIDE_GCC_STYLE_ASM)

// libdivide_64_div_32_to_32: divides a 64 bit uint {u1, u0} by a 32 bit
// uint {v}. The result must fit in 32 bits.
// Returns the quotient directly and the remainder in *r
static uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) {
    uint32_t result;
    __asm__("divl %[v]"
            : "=a"(result), "=d"(*r)
            : [v] "r"(v), "a"(u0), "d"(u1)
            );
    return result;
}

#else

static uint32_t libdivide_64_div_32_to_32(uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) {
    uint64_t n = (((uint64_t)u1) << 32) | u0;
    uint32_t result = (uint32_t)(n / v);
    *r = (uint32_t)(n - result * (uint64_t)v);
    return result;
}

#endif

#if defined(LIBDIVIDE_IS_X86_64) && \
    defined(LIBDIVIDE_GCC_STYLE_ASM)

static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) {
    // u0 -> rax
    // u1 -> rdx
    // divq
    uint64_t result;
    __asm__("divq %[v]"
            : "=a"(result), "=d"(*r)
            : [v] "r"(v), "a"(u0), "d"(u1)
            );
    return result;
}

#else

// Code taken from Hacker's Delight:
// http://www.hackersdelight.org/HDcode/divlu.c.
// License permits inclusion here per:
// http://www.hackersdelight.org/permissions.htm

static uint64_t libdivide_128_div_64_to_64(uint64_t u1, uint64_t u0, uint64_t v, uint64_t *r) {
    const uint64_t b = (1ULL << 32); // Number base (16 bits)
    uint64_t un1, un0; // Norm. dividend LSD's
    uint64_t vn1, vn0; // Norm. divisor digits
    uint64_t q1, q0; // Quotient digits
    uint64_t un64, un21, un10; // Dividend digit pairs
    uint64_t rhat; // A remainder
    int32_t s; // Shift amount for norm

    // If overflow, set rem. to an impossible value,
    // and return the largest possible quotient
    if (u1 >= v) {
        if (r != NULL)
            *r = (uint64_t) -1;
        return (uint64_t) -1;
    }

    // count leading zeros
    s = libdivide__count_leading_zeros64(v);
    if (s > 0) {
        // Normalize divisor
        v = v << s;
        un64 = (u1 << s) | ((u0 >> (64 - s)) & (-s >> 31));
        un10 = u0 << s; // Shift dividend left
    } else {
        // Avoid undefined behavior
        un64 = u1 | u0;
        un10 = u0;
    }

    // Break divisor up into two 32-bit digits
    vn1 = v >> 32;
    vn0 = v & 0xFFFFFFFF;

    // Break right half of dividend into two digits
    un1 = un10 >> 32;
    un0 = un10 & 0xFFFFFFFF;

    // Compute the first quotient digit, q1
    q1 = un64 / vn1;
    rhat = un64 - q1 * vn1;

    while (q1 >= b || q1 * vn0 > b * rhat + un1) {
        q1 = q1 - 1;
        rhat = rhat + vn1;
        if (rhat >= b)
            break;
    }

     // Multiply and subtract
    un21 = un64 * b + un1 - q1 * v;

    // Compute the second quotient digit
    q0 = un21 / vn1;
    rhat = un21 - q0 * vn1;

    while (q0 >= b || q0 * vn0 > b * rhat + un0) {
        q0 = q0 - 1;
        rhat = rhat + vn1;
        if (rhat >= b)
            break;
    }

    // If remainder is wanted, return it
    if (r != NULL)
        *r = (un21 * b + un0 - q0 * v) >> s;

    return q1 * b + q0;
}

#endif

// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0)
static inline void libdivide_u128_shift(uint64_t *u1, uint64_t *u0, int32_t signed_shift)
{
    if (signed_shift > 0) {
        uint32_t shift = signed_shift;
        *u1 <<= shift;
        *u1 |= *u0 >> (64 - shift);
        *u0 <<= shift;
    } else {
        uint32_t shift = -signed_shift;
        *u0 >>= shift;
        *u0 |= *u1 << (64 - shift);
        *u1 >>= shift;
    }
}

// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder.
static uint64_t libdivide_128_div_128_to_64(uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) {
#if defined(HAS_INT128_T)
    __uint128_t ufull = u_hi;
    __uint128_t vfull = v_hi;
    ufull = (ufull << 64) | u_lo;
    vfull = (vfull << 64) | v_lo;
    uint64_t res = (uint64_t)(ufull / vfull);
    __uint128_t remainder = ufull - (vfull * res);
    *r_lo = (uint64_t)remainder;
    *r_hi = (uint64_t)(remainder >> 64);
    return res;
#else
    // Adapted from "Unsigned Doubleword Division" in Hacker's Delight
    // We want to compute u / v
    typedef struct { uint64_t hi; uint64_t lo; } u128_t;
    u128_t u = {u_hi, u_lo};
    u128_t v = {v_hi, v_lo};

    if (v.hi == 0) {
        // divisor v is a 64 bit value, so we just need one 128/64 division
        // Note that we are simpler than Hacker's Delight here, because we know
        // the quotient fits in 64 bits whereas Hacker's Delight demands a full
        // 128 bit quotient
        *r_hi = 0;
        return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo);
    }
    // Here v >= 2**64
    // We know that v.hi != 0, so count leading zeros is OK
    // We have 0 <= n <= 63
    uint32_t n = libdivide__count_leading_zeros64(v.hi);

    // Normalize the divisor so its MSB is 1
    u128_t v1t = v;
    libdivide_u128_shift(&v1t.hi, &v1t.lo, n);
    uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64

    // To ensure no overflow
    u128_t u1 = u;
    libdivide_u128_shift(&u1.hi, &u1.lo, -1);

    // Get quotient from divide unsigned insn.
    uint64_t rem_ignored;
    uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored);

    // Undo normalization and division of u by 2.
    u128_t q0 = {0, q1};
    libdivide_u128_shift(&q0.hi, &q0.lo, n);
    libdivide_u128_shift(&q0.hi, &q0.lo, -63);

    // Make q0 correct or too small by 1
    // Equivalent to `if (q0 != 0) q0 = q0 - 1;`
    if (q0.hi != 0 || q0.lo != 0) {
        q0.hi -= (q0.lo == 0); // borrow
        q0.lo -= 1;
    }

    // Now q0 is correct.
    // Compute q0 * v as q0v
    // = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo)
    // = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) +
    //   (q0.lo * v.hi <<  64) + q0.lo * v.lo)
    // Each term is 128 bit
    // High half of full product (upper 128 bits!) are dropped
    u128_t q0v = {0, 0};
    q0v.hi = q0.hi*v.lo + q0.lo*v.hi + libdivide__mullhi_u64(q0.lo, v.lo);
    q0v.lo = q0.lo*v.lo;

    // Compute u - q0v as u_q0v
    // This is the remainder
    u128_t u_q0v = u;
    u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow
    u_q0v.lo -= q0v.lo;

    // Check if u_q0v >= v
    // This checks if our remainder is larger than the divisor
    if ((u_q0v.hi > v.hi) ||
        (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) {
        // Increment q0
        q0.lo += 1;
        q0.hi += (q0.lo == 0); // carry

        // Subtract v from remainder
        u_q0v.hi -= v.hi + (u_q0v.lo < v.lo);
        u_q0v.lo -= v.lo;
    }

    *r_hi = u_q0v.hi;
    *r_lo = u_q0v.lo;

    LIBDIVIDE_ASSERT(q0.hi == 0);
    return q0.lo;
#endif
}

////////// UINT32

static inline struct libdivide_u32_t libdivide_internal_u32_gen(uint32_t d, int branchfree) {
    if (d == 0) {
        LIBDIVIDE_ERROR("divider must be != 0");
    }

    struct libdivide_u32_t result;
    uint32_t floor_log_2_d = 31 - libdivide__count_leading_zeros32(d);
    if ((d & (d - 1)) == 0) {
        // Power of 2
        if (! branchfree) {
            result.magic = 0;
            result.more = floor_log_2_d | LIBDIVIDE_U32_SHIFT_PATH;
        } else {
            // We want a magic number of 2**32 and a shift of floor_log_2_d
            // but one of the shifts is taken up by LIBDIVIDE_ADD_MARKER,
            // so we subtract 1 from the shift
            result.magic = 0;
            result.more = (floor_log_2_d-1) | LIBDIVIDE_ADD_MARKER;
        }
    } else {
        uint8_t more;
        uint32_t rem, proposed_m;
        proposed_m = libdivide_64_div_32_to_32(1U << floor_log_2_d, 0, d, &rem);

        LIBDIVIDE_ASSERT(rem > 0 && rem < d);
        const uint32_t e = d - rem;

        // This power works if e < 2**floor_log_2_d.
        if (!branchfree && (e < (1U << floor_log_2_d))) {
            // This power works
            more = floor_log_2_d;
        } else {
            // We have to use the general 33-bit algorithm.  We need to compute
            // (2**power) / d. However, we already have (2**(power-1))/d and
            // its remainder.  By doubling both, and then correcting the
            // remainder, we can compute the larger division.
            // don't care about overflow here - in fact, we expect it
            proposed_m += proposed_m;
            const uint32_t twice_rem = rem + rem;
            if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
            more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
        }
        result.magic = 1 + proposed_m;
        result.more = more;
        // result.more's shift should in general be ceil_log_2_d. But if we
        // used the smaller power, we subtract one from the shift because we're
        // using the smaller power. If we're using the larger power, we
        // subtract one from the shift because it's taken care of by the add
        // indicator. So floor_log_2_d happens to be correct in both cases.
    }
    return result;
}

struct libdivide_u32_t libdivide_u32_gen(uint32_t d) {
    return libdivide_internal_u32_gen(d, 0);
}

struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) {
    if (d == 1) {
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
    }
    struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1);
    struct libdivide_u32_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)};
    return ret;
}

uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_U32_SHIFT_PATH) {
        return numer >> (more & LIBDIVIDE_32_SHIFT_MASK);
    }
    else {
        uint32_t q = libdivide__mullhi_u32(denom->magic, numer);
        if (more & LIBDIVIDE_ADD_MARKER) {
            uint32_t t = ((numer - q) >> 1) + q;
            return t >> (more & LIBDIVIDE_32_SHIFT_MASK);
        }
        else {
            // all upper bits are 0 - don't need to mask them off
            return q >> more;
        }
    }
}

uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) {
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
    if (more & LIBDIVIDE_U32_SHIFT_PATH) {
        return 1U << shift;
    } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
        // We compute q = n/d = n*m / 2^(32 + shift)
        // Therefore we have d = 2^(32 + shift) / m
        // We need to ceil it.
        // We know d is not a power of 2, so m is not a power of 2,
        // so we can just add 1 to the floor
        uint32_t hi_dividend = 1U << shift;
        uint32_t rem_ignored;
        return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored);
    } else {
        // Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
        // Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
        // Also note that shift may be as high as 31, so shift + 1 will
        // overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
        // then double the quotient and remainder.
        uint64_t half_n = 1ULL << (32 + shift);
        uint64_t d = (1ULL << 32) | denom->magic;
        // Note that the quotient is guaranteed <= 32 bits, but the remainder
        // may need 33!
        uint32_t half_q = (uint32_t)(half_n / d);
        uint64_t rem = half_n % d;
        // We computed 2^(32+shift)/(m+2^32)
        // Need to double it, and then add 1 to the quotient if doubling th
        // remainder would increase the quotient.
        // Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
        uint32_t full_q = half_q + half_q + ((rem<<1) >= d);

        // We rounded down in gen unless we're a power of 2 (i.e. in branchfree case)
        // We can detect that by looking at m. If m zero, we're a power of 2
        return full_q + (denom->magic != 0);
    }
}

uint32_t libdivide_u32_branchfree_recover(const struct libdivide_u32_branchfree_t *denom) {
    struct libdivide_u32_t denom_u32 = {denom->magic, (uint8_t)(denom->more | LIBDIVIDE_ADD_MARKER)};
    return libdivide_u32_recover(&denom_u32);
}

int libdivide_u32_get_algorithm(const struct libdivide_u32_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_U32_SHIFT_PATH) return 0;
    else if (!(more & LIBDIVIDE_ADD_MARKER)) return 1;
    else return 2;
}

uint32_t libdivide_u32_do_alg0(uint32_t numer, const struct libdivide_u32_t *denom) {
    return numer >> (denom->more & LIBDIVIDE_32_SHIFT_MASK);
}

uint32_t libdivide_u32_do_alg1(uint32_t numer, const struct libdivide_u32_t *denom) {
    uint32_t q = libdivide__mullhi_u32(denom->magic, numer);
    return q >> denom->more;
}

uint32_t libdivide_u32_do_alg2(uint32_t numer, const struct libdivide_u32_t *denom) {
    // denom->add != 0
    uint32_t q = libdivide__mullhi_u32(denom->magic, numer);
    uint32_t t = ((numer - q) >> 1) + q;
    // Note that this mask is typically free. Only the low bits are meaningful
    // to a shift, so compilers can optimize out this AND.
    return t >> (denom->more & LIBDIVIDE_32_SHIFT_MASK);
}

// same as algo 2
uint32_t libdivide_u32_branchfree_do(uint32_t numer, const struct libdivide_u32_branchfree_t *denom) {
    uint32_t q = libdivide__mullhi_u32(denom->magic, numer);
    uint32_t t = ((numer - q) >> 1) + q;
    return t >> denom->more;
}

#if defined(LIBDIVIDE_USE_SSE2)

__m128i libdivide_u32_do_vector(__m128i numers, const struct libdivide_u32_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_U32_SHIFT_PATH) {
        return _mm_srl_epi32(numers, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK));
    }
    else {
        __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic));
        if (more & LIBDIVIDE_ADD_MARKER) {
            // uint32_t t = ((numer - q) >> 1) + q;
            // return t >> denom->shift;
            __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
            return _mm_srl_epi32(t, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK));

        }
        else {
            // q >> denom->shift
            return _mm_srl_epi32(q, libdivide_u32_to_m128i(more));
        }
    }
}

__m128i libdivide_u32_do_vector_alg0(__m128i numers, const struct libdivide_u32_t *denom) {
    return _mm_srl_epi32(numers, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK));
}

__m128i libdivide_u32_do_vector_alg1(__m128i numers, const struct libdivide_u32_t *denom) {
    __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic));
    return _mm_srl_epi32(q, libdivide_u32_to_m128i(denom->more));
}

__m128i libdivide_u32_do_vector_alg2(__m128i numers, const struct libdivide_u32_t *denom) {
    __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic));
    __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
    return _mm_srl_epi32(t, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK));
}

// same as algo 2
LIBDIVIDE_API __m128i libdivide_u32_branchfree_do_vector(__m128i numers, const struct libdivide_u32_branchfree_t *denom) {
    __m128i q = libdivide__mullhi_u32_flat_vector(numers, _mm_set1_epi32(denom->magic));
    __m128i t = _mm_add_epi32(_mm_srli_epi32(_mm_sub_epi32(numers, q), 1), q);
    return _mm_srl_epi32(t, libdivide_u32_to_m128i(denom->more));
}

#endif

/////////// UINT64

static inline struct libdivide_u64_t libdivide_internal_u64_gen(uint64_t d, int branchfree) {
    if (d == 0) {
        LIBDIVIDE_ERROR("divider must be != 0");
    }

    struct libdivide_u64_t result;
    uint32_t floor_log_2_d = 63 - libdivide__count_leading_zeros64(d);
    if ((d & (d - 1)) == 0) {
        // Power of 2
        if (! branchfree) {
            result.magic = 0;
            result.more = floor_log_2_d | LIBDIVIDE_U64_SHIFT_PATH;
        } else {
            // We want a magic number of 2**64 and a shift of floor_log_2_d
            // but one of the shifts is taken up by LIBDIVIDE_ADD_MARKER,
            // so we subtract 1 from the shift
            result.magic = 0;
            result.more = (floor_log_2_d-1) | LIBDIVIDE_ADD_MARKER;
        }
    } else {
        uint64_t proposed_m, rem;
        uint8_t more;
        // (1 << (64 + floor_log_2_d)) / d
        proposed_m = libdivide_128_div_64_to_64(1ULL << floor_log_2_d, 0, d, &rem);

        LIBDIVIDE_ASSERT(rem > 0 && rem < d);
        const uint64_t e = d - rem;

        // This power works if e < 2**floor_log_2_d.
        if (!branchfree && e < (1ULL << floor_log_2_d)) {
            // This power works
            more = floor_log_2_d;
        } else {
            // We have to use the general 65-bit algorithm.  We need to compute
            // (2**power) / d. However, we already have (2**(power-1))/d and
            // its remainder. By doubling both, and then correcting the
            // remainder, we can compute the larger division.
            // don't care about overflow here - in fact, we expect it
            proposed_m += proposed_m;
            const uint64_t twice_rem = rem + rem;
            if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
                more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
        }
        result.magic = 1 + proposed_m;
        result.more = more;
        // result.more's shift should in general be ceil_log_2_d. But if we
        // used the smaller power, we subtract one from the shift because we're
        // using the smaller power. If we're using the larger power, we
        // subtract one from the shift because it's taken care of by the add
        // indicator. So floor_log_2_d happens to be correct in both cases,
        // which is why we do it outside of the if statement.
    }
    return result;
}

struct libdivide_u64_t libdivide_u64_gen(uint64_t d) {
    return libdivide_internal_u64_gen(d, 0);
}

struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d) {
    if (d == 1) {
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
    }
    struct libdivide_u64_t tmp = libdivide_internal_u64_gen(d, 1);
    struct libdivide_u64_branchfree_t ret = {tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_64_SHIFT_MASK)};
    return ret;
}

uint64_t libdivide_u64_do(uint64_t numer, const struct libdivide_u64_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_U64_SHIFT_PATH) {
        return numer >> (more & LIBDIVIDE_64_SHIFT_MASK);
    }
    else {
        uint64_t q = libdivide__mullhi_u64(denom->magic, numer);
        if (more & LIBDIVIDE_ADD_MARKER) {
            uint64_t t = ((numer - q) >> 1) + q;
            return t >> (more & LIBDIVIDE_64_SHIFT_MASK);
        }
        else {
             // all upper bits are 0 - don't need to mask them off
            return q >> more;
        }
    }
}

uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom) {
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
    if (more & LIBDIVIDE_U64_SHIFT_PATH) {
        return 1ULL << shift;
    } else if (!(more & LIBDIVIDE_ADD_MARKER)) {
        // We compute q = n/d = n*m / 2^(64 + shift)
        // Therefore we have d = 2^(64 + shift) / m
        // We need to ceil it.
        // We know d is not a power of 2, so m is not a power of 2,
        // so we can just add 1 to the floor
        uint64_t hi_dividend = 1ULL << shift;
        uint64_t rem_ignored;
        return 1 + libdivide_128_div_64_to_64(hi_dividend, 0, denom->magic, &rem_ignored);
    } else {
        // Here we wish to compute d = 2^(64+shift+1)/(m+2^64).
        // Notice (m + 2^64) is a 65 bit number. This gets hairy. See
        // libdivide_u32_recover for more on what we do here.
        // TODO: do something better than 128 bit math

        // Hack: if d is not a power of 2, this is a 128/128->64 divide
        // If d is a power of 2, this may be a bigger divide
        // However we can optimize that easily
        if (denom->magic == 0) {
            // 2^(64 + shift + 1) / (2^64) == 2^(shift + 1)
            return 1ULL << (shift + 1);
        }

        // Full n is a (potentially) 129 bit value
        // half_n is a 128 bit value
        // Compute the hi half of half_n. Low half is 0.
        uint64_t half_n_hi = 1ULL << shift, half_n_lo = 0;
        // d is a 65 bit value. The high bit is always set to 1.
        const uint64_t d_hi = 1, d_lo = denom->magic;
        // Note that the quotient is guaranteed <= 64 bits,
        // but the remainder may need 65!
        uint64_t r_hi, r_lo;
        uint64_t half_q = libdivide_128_div_128_to_64(half_n_hi, half_n_lo, d_hi, d_lo, &r_hi, &r_lo);
        // We computed 2^(64+shift)/(m+2^64)
        // Double the remainder ('dr') and check if that is larger than d
        // Note that d is a 65 bit value, so r1 is small and so r1 + r1 cannot
        // overflow
        uint64_t dr_lo = r_lo + r_lo;
        uint64_t dr_hi = r_hi + r_hi + (dr_lo < r_lo); // last term is carry
        int dr_exceeds_d = (dr_hi > d_hi) || (dr_hi == d_hi && dr_lo >= d_lo);
        uint64_t full_q = half_q + half_q + (dr_exceeds_d ? 1 : 0);
        return full_q + 1;
    }
}

uint64_t libdivide_u64_branchfree_recover(const struct libdivide_u64_branchfree_t *denom) {
    struct libdivide_u64_t denom_u64 = {denom->magic, (uint8_t)(denom->more | LIBDIVIDE_ADD_MARKER)};
    return libdivide_u64_recover(&denom_u64);
}

int libdivide_u64_get_algorithm(const struct libdivide_u64_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_U64_SHIFT_PATH) return 0;
    else if (!(more & LIBDIVIDE_ADD_MARKER)) return 1;
    else return 2;
}

uint64_t libdivide_u64_do_alg0(uint64_t numer, const struct libdivide_u64_t *denom) {
    return numer >> (denom->more & LIBDIVIDE_64_SHIFT_MASK);
}

uint64_t libdivide_u64_do_alg1(uint64_t numer, const struct libdivide_u64_t *denom) {
    uint64_t q = libdivide__mullhi_u64(denom->magic, numer);
    return q >> denom->more;
}

uint64_t libdivide_u64_do_alg2(uint64_t numer, const struct libdivide_u64_t *denom) {
    uint64_t q = libdivide__mullhi_u64(denom->magic, numer);
    uint64_t t = ((numer - q) >> 1) + q;
    return t >> (denom->more & LIBDIVIDE_64_SHIFT_MASK);
}

// same as alg 2
uint64_t libdivide_u64_branchfree_do(uint64_t numer, const struct libdivide_u64_branchfree_t *denom) {
    uint64_t q = libdivide__mullhi_u64(denom->magic, numer);
    uint64_t t = ((numer - q) >> 1) + q;
    return t >> denom->more;
}

#if defined(LIBDIVIDE_USE_SSE2)

__m128i libdivide_u64_do_vector(__m128i numers, const struct libdivide_u64_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_U64_SHIFT_PATH) {
        return _mm_srl_epi64(numers, libdivide_u32_to_m128i(more & LIBDIVIDE_64_SHIFT_MASK));
    }
    else {
        __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
        if (more & LIBDIVIDE_ADD_MARKER) {
            // uint32_t t = ((numer - q) >> 1) + q;
            // return t >> denom->shift;
            __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
            return _mm_srl_epi64(t, libdivide_u32_to_m128i(more & LIBDIVIDE_64_SHIFT_MASK));
        }
        else {
            // q >> denom->shift
            return _mm_srl_epi64(q, libdivide_u32_to_m128i(more));
        }
    }
}

__m128i libdivide_u64_do_vector_alg0(__m128i numers, const struct libdivide_u64_t *denom) {
    return _mm_srl_epi64(numers, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_64_SHIFT_MASK));
}

__m128i libdivide_u64_do_vector_alg1(__m128i numers, const struct libdivide_u64_t *denom) {
    __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
    return _mm_srl_epi64(q, libdivide_u32_to_m128i(denom->more));
}

__m128i libdivide_u64_do_vector_alg2(__m128i numers, const struct libdivide_u64_t *denom) {
    __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
    __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
    return _mm_srl_epi64(t, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_64_SHIFT_MASK));
}

__m128i libdivide_u64_branchfree_do_vector(__m128i numers, const struct libdivide_u64_branchfree_t *denom) {
    __m128i q = libdivide_mullhi_u64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
    __m128i t = _mm_add_epi64(_mm_srli_epi64(_mm_sub_epi64(numers, q), 1), q);
    return _mm_srl_epi64(t, libdivide_u32_to_m128i(denom->more));
}

#endif

/////////// SINT32

static inline int32_t libdivide__mullhi_s32(int32_t x, int32_t y) {
    int64_t xl = x, yl = y;
    int64_t rl = xl * yl;
    // needs to be arithmetic shift
    return (int32_t)(rl >> 32);
}

static inline struct libdivide_s32_t libdivide_internal_s32_gen(int32_t d, int branchfree) {
    if (d == 0) {
        LIBDIVIDE_ERROR("divider must be != 0");
    }

    struct libdivide_s32_t result;

    // If d is a power of 2, or negative a power of 2, we have to use a shift.
    // This is especially important because the magic algorithm fails for -1.
    // To check if d is a power of 2 or its inverse, it suffices to check
    // whether its absolute value has exactly one bit set. This works even for
    // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
    // and is a power of 2.
    uint32_t ud = (uint32_t)d;
    uint32_t absD = (d < 0) ? -ud : ud;
    uint32_t floor_log_2_d = 31 - libdivide__count_leading_zeros32(absD);
    // check if exactly one bit is set,
    // don't care if absD is 0 since that's divide by zero
    if ((absD & (absD - 1)) == 0) {
        // Branchfree and normal paths are exactly the same
        result.magic = 0;
        result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0) | LIBDIVIDE_S32_SHIFT_PATH;
    } else {
        LIBDIVIDE_ASSERT(floor_log_2_d >= 1);

        uint8_t more;
        // the dividend here is 2**(floor_log_2_d + 31), so the low 32 bit word
        // is 0 and the high word is floor_log_2_d - 1
        uint32_t rem, proposed_m;
        proposed_m = libdivide_64_div_32_to_32(1U << (floor_log_2_d - 1), 0, absD, &rem);
        const uint32_t e = absD - rem;

        // We are going to start with a power of floor_log_2_d - 1.
        // This works if works if e < 2**floor_log_2_d.
        if (!branchfree && e < (1U << floor_log_2_d)) {
            // This power works
            more = floor_log_2_d - 1;
        } else {
            // We need to go one higher. This should not make proposed_m
            // overflow, but it will make it negative when interpreted as an
            // int32_t.
            proposed_m += proposed_m;
            const uint32_t twice_rem = rem + rem;
            if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
            more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
        }

        proposed_m += 1;
        int32_t magic = (int32_t)proposed_m;

        // Mark if we are negative. Note we only negate the magic number in the
        // branchfull case.
        if (d < 0) {
            more |= LIBDIVIDE_NEGATIVE_DIVISOR;
            if (!branchfree) {
                magic = -magic;
            }
        }

        result.more = more;
        result.magic = magic;
    }
    return result;
}

LIBDIVIDE_API struct libdivide_s32_t libdivide_s32_gen(int32_t d) {
    return libdivide_internal_s32_gen(d, 0);
}

LIBDIVIDE_API struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d) {
    if (d == 1) {
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
    }
    if (d == -1) {
        LIBDIVIDE_ERROR("branchfree divider must be != -1");
    }
    struct libdivide_s32_t tmp = libdivide_internal_s32_gen(d, 1);
    struct libdivide_s32_branchfree_t result = {tmp.magic, tmp.more};
    return result;
}

int32_t libdivide_s32_do(int32_t numer, const struct libdivide_s32_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_S32_SHIFT_PATH) {
        uint32_t sign = (int8_t)more >> 7;
        uint8_t shifter = more & LIBDIVIDE_32_SHIFT_MASK;
        uint32_t uq = (uint32_t)(numer + ((numer >> 31) & ((1U << shifter) - 1)));
        int32_t q = (int32_t)uq;
        q = q >> shifter;
        q = (q ^ sign) - sign;
        return q;
    } else {
        uint32_t uq = (uint32_t)libdivide__mullhi_s32(denom->magic, numer);
        if (more & LIBDIVIDE_ADD_MARKER) {
            // must be arithmetic shift and then sign extend
            int32_t sign = (int8_t)more >> 7;
            // q += (more < 0 ? -numer : numer), casts to avoid UB
            uq += ((uint32_t)numer ^ sign) - sign;
        }
        int32_t q = (int32_t)uq;
        q >>= more & LIBDIVIDE_32_SHIFT_MASK;
        q += (q < 0);
        return q;
    }
}

int32_t libdivide_s32_branchfree_do(int32_t numer, const struct libdivide_s32_branchfree_t *denom) {
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
    // must be arithmetic shift and then sign extend
    int32_t sign = (int8_t)more >> 7;
    int32_t magic = denom->magic;
    int32_t q = libdivide__mullhi_s32(magic, numer);
    q += numer;

    // If q is non-negative, we have nothing to do
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
    // 2, or (2**shift) if it is not a power of 2
    uint32_t is_power_of_2 = !!(more & LIBDIVIDE_S32_SHIFT_PATH);
    uint32_t q_sign = (uint32_t)(q >> 31);
    q += q_sign & ((1 << shift) - is_power_of_2);

    // Now arithmetic right shift
    q >>= shift;

    // Negate if needed
    q = (q ^ sign) - sign;

    return q;
}

int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom) {
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
    if (more & LIBDIVIDE_S32_SHIFT_PATH) {
        uint32_t absD = 1U << shift;
        if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
            absD = -absD;
        }
        return (int32_t)absD;
    } else {
        // Unsigned math is much easier
        // We negate the magic number only in the branchfull case, and we don't
        // know which case we're in. However we have enough information to
        // determine the correct sign of the magic number. The divisor was
        // negative if LIBDIVIDE_NEGATIVE_DIVISOR is set. If ADD_MARKER is set,
        // the magic number's sign is opposite that of the divisor.
        // We want to compute the positive magic number.
        int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
        int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER)
            ? denom->magic > 0 : denom->magic < 0;

        // Handle the power of 2 case (including branchfree)
        if (denom->magic == 0) {
            int32_t result = 1 << shift;
            return negative_divisor ? -result : result;
        }

        uint32_t d = (uint32_t)(magic_was_negated ? -denom->magic : denom->magic);
        uint64_t n = 1ULL << (32 + shift); // this shift cannot exceed 30
        uint32_t q = (uint32_t)(n / d);
        int32_t result = (int32_t)q;
        result += 1;
        return negative_divisor ? -result : result;
    }
}

int32_t libdivide_s32_branchfree_recover(const struct libdivide_s32_branchfree_t *denom) {
    return libdivide_s32_recover((const struct libdivide_s32_t *)denom);
}

int libdivide_s32_get_algorithm(const struct libdivide_s32_t *denom) {
    uint8_t more = denom->more;
    int positiveDivisor = !(more & LIBDIVIDE_NEGATIVE_DIVISOR);
    if (more & LIBDIVIDE_S32_SHIFT_PATH) return (positiveDivisor ? 0 : 1);
    else if (more & LIBDIVIDE_ADD_MARKER) return (positiveDivisor ? 2 : 3);
    else return 4;
}

int32_t libdivide_s32_do_alg0(int32_t numer, const struct libdivide_s32_t *denom) {
    uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK;
    int32_t q = numer + ((numer >> 31) & ((1U << shifter) - 1));
    return q >> shifter;
}

int32_t libdivide_s32_do_alg1(int32_t numer, const struct libdivide_s32_t *denom) {
    uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK;
    int32_t q = numer + ((numer >> 31) & ((1U << shifter) - 1));
    return - (q >> shifter);
}

int32_t libdivide_s32_do_alg2(int32_t numer, const struct libdivide_s32_t *denom) {
    int32_t q = libdivide__mullhi_s32(denom->magic, numer);
    q += numer;
    q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK;
    q += (q < 0);
    return q;
}

int32_t libdivide_s32_do_alg3(int32_t numer, const struct libdivide_s32_t *denom) {
    int32_t q = libdivide__mullhi_s32(denom->magic, numer);
    q -= numer;
    q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK;
    q += (q < 0);
    return q;
}

int32_t libdivide_s32_do_alg4(int32_t numer, const struct libdivide_s32_t *denom) {
    int32_t q = libdivide__mullhi_s32(denom->magic, numer);
    q >>= denom->more & LIBDIVIDE_32_SHIFT_MASK;
    q += (q < 0);
    return q;
}

#if defined(LIBDIVIDE_USE_SSE2)

__m128i libdivide_s32_do_vector(__m128i numers, const struct libdivide_s32_t *denom) {
    uint8_t more = denom->more;
    if (more & LIBDIVIDE_S32_SHIFT_PATH) {
        uint32_t shifter = more & LIBDIVIDE_32_SHIFT_MASK;
        __m128i roundToZeroTweak = _mm_set1_epi32((1U << shifter) - 1); // could use _mm_srli_epi32 with an all -1 register
        __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak)); //q = numer + ((numer >> 31) & roundToZeroTweak);
        q = _mm_sra_epi32(q, libdivide_u32_to_m128i(shifter)); // q = q >> shifter
        __m128i shiftMask = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); // set all bits of shift mask = to the sign bit of more
        q = _mm_sub_epi32(_mm_xor_si128(q, shiftMask), shiftMask); // q = (q ^ shiftMask) - shiftMask;
        return q;
    }
    else {
        __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic));
        if (more & LIBDIVIDE_ADD_MARKER) {
            __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7); // must be arithmetic shift
            q = _mm_add_epi32(q, _mm_sub_epi32(_mm_xor_si128(numers, sign), sign)); // q += ((numer ^ sign) - sign);
        }
        q = _mm_sra_epi32(q, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK)); // q >>= shift
        q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0)
        return q;
    }
}

__m128i libdivide_s32_do_vector_alg0(__m128i numers, const struct libdivide_s32_t *denom) {
    uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK;
    __m128i roundToZeroTweak = _mm_set1_epi32((1U << shifter) - 1);
    __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak));
    return _mm_sra_epi32(q, libdivide_u32_to_m128i(shifter));
}

__m128i libdivide_s32_do_vector_alg1(__m128i numers, const struct libdivide_s32_t *denom) {
    uint8_t shifter = denom->more & LIBDIVIDE_32_SHIFT_MASK;
    __m128i roundToZeroTweak = _mm_set1_epi32((1U << shifter) - 1);
    __m128i q = _mm_add_epi32(numers, _mm_and_si128(_mm_srai_epi32(numers, 31), roundToZeroTweak));
    return _mm_sub_epi32(_mm_setzero_si128(), _mm_sra_epi32(q, libdivide_u32_to_m128i(shifter)));
}

__m128i libdivide_s32_do_vector_alg2(__m128i numers, const struct libdivide_s32_t *denom) {
    __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic));
    q = _mm_add_epi32(q, numers);
    q = _mm_sra_epi32(q, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK));
    q = _mm_add_epi32(q, _mm_srli_epi32(q, 31));
    return q;
}

__m128i libdivide_s32_do_vector_alg3(__m128i numers, const struct libdivide_s32_t *denom) {
    __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic));
    q = _mm_sub_epi32(q, numers);
    q = _mm_sra_epi32(q, libdivide_u32_to_m128i(denom->more & LIBDIVIDE_32_SHIFT_MASK));
    q = _mm_add_epi32(q, _mm_srli_epi32(q, 31));
    return q;
}

__m128i libdivide_s32_do_vector_alg4(__m128i numers, const struct libdivide_s32_t *denom) {
    uint8_t more = denom->more;
    __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(denom->magic));
    q = _mm_sra_epi32(q, libdivide_u32_to_m128i(more & LIBDIVIDE_32_SHIFT_MASK)); //q >>= shift
    q = _mm_add_epi32(q, _mm_srli_epi32(q, 31)); // q += (q < 0)
    return q;
}

__m128i libdivide_s32_branchfree_do_vector(__m128i numers, const struct libdivide_s32_branchfree_t *denom) {
    int32_t magic = denom->magic;
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
     // must be arithmetic shift
    __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7);

     // libdivide__mullhi_s32(numers, magic);
    __m128i q = libdivide_mullhi_s32_flat_vector(numers, _mm_set1_epi32(magic));
    q = _mm_add_epi32(q, numers); // q += numers

    // If q is non-negative, we have nothing to do
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
    // 2, or (2**shift) if it is not a power of 2
    uint32_t is_power_of_2 = (magic == 0);
    __m128i q_sign = _mm_srai_epi32(q, 31); // q_sign = q >> 31
    __m128i mask = _mm_set1_epi32((1 << shift) - is_power_of_2);
    q = _mm_add_epi32(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask)
    q = _mm_srai_epi32(q, shift); //q >>= shift
    q = _mm_sub_epi32(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign
    return q;
}

#endif

///////////// SINT64

static inline struct libdivide_s64_t libdivide_internal_s64_gen(int64_t d, int branchfree) {
    if (d == 0) {
        LIBDIVIDE_ERROR("divider must be != 0");
    }

    struct libdivide_s64_t result;

    // If d is a power of 2, or negative a power of 2, we have to use a shift.
    // This is especially important because the magic algorithm fails for -1.
    // To check if d is a power of 2 or its inverse, it suffices to check
    // whether its absolute value has exactly one bit set.  This works even for
    // INT_MIN, because abs(INT_MIN) == INT_MIN, and INT_MIN has one bit set
    // and is a power of 2.
    uint64_t ud = (uint64_t)d;
    uint64_t absD = (d < 0) ? -ud : ud;
    uint32_t floor_log_2_d = 63 - libdivide__count_leading_zeros64(absD);
    // check if exactly one bit is set,
    // don't care if absD is 0 since that's divide by zero
    if ((absD & (absD - 1)) == 0) {
        // Branchfree and non-branchfree cases are the same
        result.magic = 0;
        result.more = floor_log_2_d | (d < 0 ? LIBDIVIDE_NEGATIVE_DIVISOR : 0);
    } else {
        // the dividend here is 2**(floor_log_2_d + 63), so the low 64 bit word
        // is 0 and the high word is floor_log_2_d - 1
        uint8_t more;
        uint64_t rem, proposed_m;
        proposed_m = libdivide_128_div_64_to_64(1ULL << (floor_log_2_d - 1), 0, absD, &rem);
        const uint64_t e = absD - rem;

        // We are going to start with a power of floor_log_2_d - 1.
        // This works if works if e < 2**floor_log_2_d.
        if (!branchfree && e < (1ULL << floor_log_2_d)) {
            // This power works
            more = floor_log_2_d - 1;
        } else {
            // We need to go one higher. This should not make proposed_m
            // overflow, but it will make it negative when interpreted as an
            // int32_t.
            proposed_m += proposed_m;
            const uint64_t twice_rem = rem + rem;
            if (twice_rem >= absD || twice_rem < rem) proposed_m += 1;
            // note that we only set the LIBDIVIDE_NEGATIVE_DIVISOR bit if we
            // also set ADD_MARKER this is an annoying optimization that
            // enables algorithm #4 to avoid the mask. However we always set it
            // in the branchfree case
            more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
        }
        proposed_m += 1;
        int64_t magic = (int64_t)proposed_m;

        // Mark if we are negative
        if (d < 0) {
            more |= LIBDIVIDE_NEGATIVE_DIVISOR;
            if (!branchfree) {
                magic = -magic;
            }
        }

        result.more = more;
        result.magic = magic;
    }
    return result;
}

struct libdivide_s64_t libdivide_s64_gen(int64_t d) {
    return libdivide_internal_s64_gen(d, 0);
}

struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d) {
    if (d == 1) {
        LIBDIVIDE_ERROR("branchfree divider must be != 1");
    }
    if (d == -1) {
        LIBDIVIDE_ERROR("branchfree divider must be != -1");
    }
    struct libdivide_s64_t tmp = libdivide_internal_s64_gen(d, 1);
    struct libdivide_s64_branchfree_t ret = {tmp.magic, tmp.more};
    return ret;
}

int64_t libdivide_s64_do(int64_t numer, const struct libdivide_s64_t *denom) {
    uint8_t more = denom->more;
    int64_t magic = denom->magic;
    if (magic == 0) { //shift path
        uint32_t shifter = more & LIBDIVIDE_64_SHIFT_MASK;
        uint64_t uq = (uint64_t)numer + ((numer >> 63) & ((1ULL << shifter) - 1));
        int64_t q = (int64_t)uq;
        q = q >> shifter;
        // must be arithmetic shift and then sign-extend
        int64_t shiftMask = (int8_t)more >> 7;
        q = (q ^ shiftMask) - shiftMask;
        return q;
    } else {
        uint64_t uq = (uint64_t)libdivide__mullhi_s64(magic, numer);
        if (more & LIBDIVIDE_ADD_MARKER) {
            // must be arithmetic shift and then sign extend
            int64_t sign = (int8_t)more >> 7;
            uq += ((uint64_t)numer ^ sign) - sign;
        }
        int64_t q = (int64_t)uq;
        q >>= more & LIBDIVIDE_64_SHIFT_MASK;
        q += (q < 0);
        return q;
    }
}

int64_t libdivide_s64_branchfree_do(int64_t numer, const struct libdivide_s64_branchfree_t *denom) {
    uint8_t more = denom->more;
    uint32_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
    // must be arithmetic shift and then sign extend
    int64_t sign = (int8_t)more >> 7;
    int64_t magic = denom->magic;
    int64_t q = libdivide__mullhi_s64(magic, numer);
    q += numer;

    // If q is non-negative, we have nothing to do.
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
    // 2, or (2**shift) if it is not a power of 2.
    uint32_t is_power_of_2 = (magic == 0);
    uint64_t q_sign = (uint64_t)(q >> 63);
    q += q_sign & ((1ULL << shift) - is_power_of_2);

    // Arithmetic right shift
    q >>= shift;

    // Negate if needed
    q = (q ^ sign) - sign;
    return q;
}

int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom) {
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
    if (denom->magic == 0) { // shift path
        uint64_t absD = 1ULL << shift;
        if (more & LIBDIVIDE_NEGATIVE_DIVISOR) {
            absD = -absD;
        }
        return (int64_t)absD;
    } else {
        // Unsigned math is much easier
        int negative_divisor = (more & LIBDIVIDE_NEGATIVE_DIVISOR);
        int magic_was_negated = (more & LIBDIVIDE_ADD_MARKER)
            ? denom->magic > 0 : denom->magic < 0;

        uint64_t d = (uint64_t)(magic_was_negated ? -denom->magic : denom->magic);
        uint64_t n_hi = 1ULL << shift, n_lo = 0;
        uint64_t rem_ignored;
        uint64_t q = libdivide_128_div_64_to_64(n_hi, n_lo, d, &rem_ignored);
        int64_t result = (int64_t)(q + 1);
        if (negative_divisor) {
            result = -result;
        }
        return result;
    }
}

int64_t libdivide_s64_branchfree_recover(const struct libdivide_s64_branchfree_t *denom) {
    return libdivide_s64_recover((const struct libdivide_s64_t *)denom);
}

int libdivide_s64_get_algorithm(const struct libdivide_s64_t *denom) {
    uint8_t more = denom->more;
    int positiveDivisor = !(more & LIBDIVIDE_NEGATIVE_DIVISOR);
    if (denom->magic == 0) return (positiveDivisor ? 0 : 1); // shift path
    else if (more & LIBDIVIDE_ADD_MARKER) return (positiveDivisor ? 2 : 3);
    else return 4;
}

int64_t libdivide_s64_do_alg0(int64_t numer, const struct libdivide_s64_t *denom) {
    uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK;
    int64_t q = numer + ((numer >> 63) & ((1ULL << shifter) - 1));
    return q >> shifter;
}

int64_t libdivide_s64_do_alg1(int64_t numer, const struct libdivide_s64_t *denom) {
    // denom->shifter != -1 && demo->shiftMask != 0
    uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK;
    int64_t q = numer + ((numer >> 63) & ((1ULL << shifter) - 1));
    return - (q >> shifter);
}

int64_t libdivide_s64_do_alg2(int64_t numer, const struct libdivide_s64_t *denom) {
    int64_t q = libdivide__mullhi_s64(denom->magic, numer);
    q += numer;
    q >>= denom->more & LIBDIVIDE_64_SHIFT_MASK;
    q += (q < 0);
    return q;
}

int64_t libdivide_s64_do_alg3(int64_t numer, const struct libdivide_s64_t *denom) {
    int64_t q = libdivide__mullhi_s64(denom->magic, numer);
    q -= numer;
    q >>= denom->more & LIBDIVIDE_64_SHIFT_MASK;
    q += (q < 0);
    return q;
}

int64_t libdivide_s64_do_alg4(int64_t numer, const struct libdivide_s64_t *denom) {
    int64_t q = libdivide__mullhi_s64(denom->magic, numer);
    q >>= denom->more & LIBDIVIDE_64_SHIFT_MASK;
    q += (q < 0);
    return q;
}

#if defined(LIBDIVIDE_USE_SSE2)

__m128i libdivide_s64_do_vector(__m128i numers, const struct libdivide_s64_t *denom) {
    uint8_t more = denom->more;
    int64_t magic = denom->magic;
    if (magic == 0) { // shift path
        uint32_t shifter = more & LIBDIVIDE_64_SHIFT_MASK;
        __m128i roundToZeroTweak = libdivide__u64_to_m128((1ULL << shifter) - 1);
        __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak)); // q = numer + ((numer >> 63) & roundToZeroTweak);
        q = libdivide_s64_shift_right_vector(q, shifter); // q = q >> shifter
        __m128i shiftMask = _mm_set1_epi32((int32_t)((int8_t)more >> 7));
        q = _mm_sub_epi64(_mm_xor_si128(q, shiftMask), shiftMask); // q = (q ^ shiftMask) - shiftMask;
        return q;
    }
    else {
        __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(magic));
        if (more & LIBDIVIDE_ADD_MARKER) {
            __m128i sign = _mm_set1_epi32((int32_t)((int8_t)more >> 7)); // must be arithmetic shift
            q = _mm_add_epi64(q, _mm_sub_epi64(_mm_xor_si128(numers, sign), sign)); // q += ((numer ^ sign) - sign);
        }
        // q >>= denom->mult_path.shift
        q = libdivide_s64_shift_right_vector(q, more & LIBDIVIDE_64_SHIFT_MASK);
        q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0)
        return q;
    }
}

__m128i libdivide_s64_do_vector_alg0(__m128i numers, const struct libdivide_s64_t *denom) {
    uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK;
    __m128i roundToZeroTweak = libdivide__u64_to_m128((1ULL << shifter) - 1);
    __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak));
    q = libdivide_s64_shift_right_vector(q, shifter);
    return q;
}

__m128i libdivide_s64_do_vector_alg1(__m128i numers, const struct libdivide_s64_t *denom) {
    uint32_t shifter = denom->more & LIBDIVIDE_64_SHIFT_MASK;
    __m128i roundToZeroTweak = libdivide__u64_to_m128((1ULL << shifter) - 1);
    __m128i q = _mm_add_epi64(numers, _mm_and_si128(libdivide_s64_signbits(numers), roundToZeroTweak));
    q = libdivide_s64_shift_right_vector(q, shifter);
    return _mm_sub_epi64(_mm_setzero_si128(), q);
}

__m128i libdivide_s64_do_vector_alg2(__m128i numers, const struct libdivide_s64_t *denom) {
    __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
    q = _mm_add_epi64(q, numers);
    q = libdivide_s64_shift_right_vector(q, denom->more & LIBDIVIDE_64_SHIFT_MASK);
    q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0)
    return q;
}

__m128i libdivide_s64_do_vector_alg3(__m128i numers, const struct libdivide_s64_t *denom) {
    __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
    q = _mm_sub_epi64(q, numers);
    q = libdivide_s64_shift_right_vector(q, denom->more & LIBDIVIDE_64_SHIFT_MASK);
    q = _mm_add_epi64(q, _mm_srli_epi64(q, 63)); // q += (q < 0)
    return q;
}

__m128i libdivide_s64_do_vector_alg4(__m128i numers, const struct libdivide_s64_t *denom) {
    __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(denom->magic));
    q = libdivide_s64_shift_right_vector(q, denom->more & LIBDIVIDE_64_SHIFT_MASK);
    q = _mm_add_epi64(q, _mm_srli_epi64(q, 63));
    return q;
}

__m128i libdivide_s64_branchfree_do_vector(__m128i numers, const struct libdivide_s64_branchfree_t *denom) {
    int64_t magic = denom->magic;
    uint8_t more = denom->more;
    uint8_t shift = more & LIBDIVIDE_64_SHIFT_MASK;
    // must be arithmetic shift
    __m128i sign = _mm_set1_epi32((int32_t)(int8_t)more >> 7);

     // libdivide__mullhi_s64(numers, magic);
    __m128i q = libdivide_mullhi_s64_flat_vector(numers, libdivide__u64_to_m128(magic));
    q = _mm_add_epi64(q, numers); // q += numers

    // If q is non-negative, we have nothing to do.
    // If q is negative, we want to add either (2**shift)-1 if d is a power of
    // 2, or (2**shift) if it is not a power of 2.
    uint32_t is_power_of_2 = (magic == 0);
    __m128i q_sign = libdivide_s64_signbits(q); // q_sign = q >> 63
    __m128i mask = libdivide__u64_to_m128((1ULL << shift) - is_power_of_2);
    q = _mm_add_epi64(q, _mm_and_si128(q_sign, mask)); // q = q + (q_sign & mask)
    q = libdivide_s64_shift_right_vector(q, shift); // q >>= shift
    q = _mm_sub_epi64(_mm_xor_si128(q, sign), sign); // q = (q ^ sign) - sign
    return q;
}

#endif

/////////// C++ stuff

#ifdef __cplusplus

// Our divider struct is templated on both a type (like uint64_t) and an
// algorithm index. BRANCHFULL is the default algorithm, BRANCHFREE is the
// branchfree variant, and the indexed variants are for unswitching.
enum {
    BRANCHFULL = -1,
    BRANCHFREE = -2,
    ALGORITHM0 = 0,
    ALGORITHM1 = 1,
    ALGORITHM2 = 2,
    ALGORITHM3 = 3,
    ALGORITHM4 = 4
};

namespace libdivide_internal {

#if defined(LIBDIVIDE_USE_SSE2)
#define MAYBE_VECTOR(X) X
#define MAYBE_VECTOR_PARAM(X) __m128i vector_func(__m128i, const X *)
#else
#define MAYBE_VECTOR(X) 0
#define MAYBE_VECTOR_PARAM(X) int unused
#endif

// The following convenience macros are used to build a type of the base
// divider class and give it as template arguments the C functions
// related to the macro name and the macro type paramaters.

#define BRANCHFULL_DIVIDER(INT, TYPE) \
    typedef base<INT, \
                 libdivide_##TYPE##_t, \
                 libdivide_##TYPE##_gen, \
                 libdivide_##TYPE##_do, \
                 MAYBE_VECTOR(libdivide_##TYPE##_do_vector)>

#define BRANCHFREE_DIVIDER(INT, TYPE) \
    typedef base<INT, \
                 libdivide_##TYPE##_branchfree_t, \
                 libdivide_##TYPE##_branchfree_gen, \
                 libdivide_##TYPE##_branchfree_do, \
                 MAYBE_VECTOR(libdivide_##TYPE##_branchfree_do_vector)>

#define ALGORITHM_DIVIDER(INT, TYPE, ALGO) \
    typedef base<INT, \
                 libdivide_##TYPE##_t, \
                 libdivide_##TYPE##_gen, \
                 libdivide_##TYPE##_do_##ALGO, \
                 MAYBE_VECTOR(libdivide_##TYPE##_do_vector_##ALGO)>

#define CRASH_DIVIDER(INT, TYPE) \
    typedef base<INT, \
                 libdivide_##TYPE##_t, \
                 libdivide_##TYPE##_gen, \
                 libdivide_##TYPE##_crash, \
                 MAYBE_VECTOR(libdivide_##TYPE##_crash_vector)>

    // Base divider, provides storage for the actual divider.
    // @IntType: e.g. uint32_t
    // @DenomType: e.g. libdivide_u32_t
    // @gen_func(): e.g. libdivide_u32_gen
    // @do_func(): e.g. libdivide_u32_do
    // @MAYBE_VECTOR_PARAM: e.g. libdivide_u32_do_vector
    template<typename IntType,
             typename DenomType,
             DenomType gen_func(IntType),
             IntType do_func(IntType, const DenomType *),
             MAYBE_VECTOR_PARAM(DenomType)>
    struct base {
        // Storage for the actual divider
        DenomType denom;

        // Constructor that takes a divisor value, and applies the gen function
        base(IntType d) : denom(gen_func(d)) { }

        // Default constructor to allow uninitialized uses in e.g. arrays
        base() {}

        // Needed for unswitch
        base(const DenomType& d) : denom(d) { }

        IntType perform_divide(IntType val) const {
            return do_func(val, &denom);
        }

#if defined(LIBDIVIDE_USE_SSE2)
        __m128i perform_divide_vector(__m128i val) const {
            return vector_func(val, &denom);
        }
#endif
    };

    // Functions that will never be called but are required to be able
    // to use unswitch in C++ template code. Unsigned has fewer algorithms
    // than signed i.e. alg3 and alg4 are not defined for unsigned. In
    // order to make templates compile we need to define unsigned alg3 and
    // alg4 as crash functions.
    uint32_t libdivide_u32_crash(uint32_t, const libdivide_u32_t *) { exit(-1); }
    uint64_t libdivide_u64_crash(uint64_t, const libdivide_u64_t *) { exit(-1); }

#if defined(LIBDIVIDE_USE_SSE2)
    __m128i libdivide_u32_crash_vector(__m128i, const libdivide_u32_t *) { exit(-1); }
    __m128i libdivide_u64_crash_vector(__m128i, const libdivide_u64_t *) { exit(-1); }
#endif

    template<typename T, int ALGO> struct dispatcher { };

    // Templated dispatch using partial specialization
    template<> struct dispatcher<int32_t, BRANCHFULL> { BRANCHFULL_DIVIDER(int32_t, s32) divider; };
    template<> struct dispatcher<int32_t, BRANCHFREE> { BRANCHFREE_DIVIDER(int32_t, s32) divider; };
    template<> struct dispatcher<int32_t, ALGORITHM0> { ALGORITHM_DIVIDER(int32_t, s32, alg0) divider; };
    template<> struct dispatcher<int32_t, ALGORITHM1> { ALGORITHM_DIVIDER(int32_t, s32, alg1) divider; };
    template<> struct dispatcher<int32_t, ALGORITHM2> { ALGORITHM_DIVIDER(int32_t, s32, alg2) divider; };
    template<> struct dispatcher<int32_t, ALGORITHM3> { ALGORITHM_DIVIDER(int32_t, s32, alg3) divider; };
    template<> struct dispatcher<int32_t, ALGORITHM4> { ALGORITHM_DIVIDER(int32_t, s32, alg4) divider; };

    template<> struct dispatcher<uint32_t, BRANCHFULL> { BRANCHFULL_DIVIDER(uint32_t, u32) divider; };
    template<> struct dispatcher<uint32_t, BRANCHFREE> { BRANCHFREE_DIVIDER(uint32_t, u32) divider; };
    template<> struct dispatcher<uint32_t, ALGORITHM0> { ALGORITHM_DIVIDER(uint32_t, u32, alg0) divider; };
    template<> struct dispatcher<uint32_t, ALGORITHM1> { ALGORITHM_DIVIDER(uint32_t, u32, alg1) divider; };
    template<> struct dispatcher<uint32_t, ALGORITHM2> { ALGORITHM_DIVIDER(uint32_t, u32, alg2) divider; };
    template<> struct dispatcher<uint32_t, ALGORITHM3> { CRASH_DIVIDER(uint32_t, u32) divider; };
    template<> struct dispatcher<uint32_t, ALGORITHM4> { CRASH_DIVIDER(uint32_t, u32) divider; };

    template<> struct dispatcher<int64_t, BRANCHFULL> { BRANCHFULL_DIVIDER(int64_t, s64) divider; };
    template<> struct dispatcher<int64_t, BRANCHFREE> { BRANCHFREE_DIVIDER(int64_t, s64) divider; };
    template<> struct dispatcher<int64_t, ALGORITHM0> { ALGORITHM_DIVIDER (int64_t, s64, alg0) divider; };
    template<> struct dispatcher<int64_t, ALGORITHM1> { ALGORITHM_DIVIDER (int64_t, s64, alg1) divider; };
    template<> struct dispatcher<int64_t, ALGORITHM2> { ALGORITHM_DIVIDER (int64_t, s64, alg2) divider; };
    template<> struct dispatcher<int64_t, ALGORITHM3> { ALGORITHM_DIVIDER (int64_t, s64, alg3) divider; };
    template<> struct dispatcher<int64_t, ALGORITHM4> { ALGORITHM_DIVIDER (int64_t, s64, alg4) divider; };

    template<> struct dispatcher<uint64_t, BRANCHFULL> { BRANCHFULL_DIVIDER(uint64_t, u64) divider; };
    template<> struct dispatcher<uint64_t, BRANCHFREE> { BRANCHFREE_DIVIDER(uint64_t, u64) divider; };
    template<> struct dispatcher<uint64_t, ALGORITHM0> { ALGORITHM_DIVIDER(uint64_t, u64, alg0) divider; };
    template<> struct dispatcher<uint64_t, ALGORITHM1> { ALGORITHM_DIVIDER(uint64_t, u64, alg1) divider; };
    template<> struct dispatcher<uint64_t, ALGORITHM2> { ALGORITHM_DIVIDER(uint64_t, u64, alg2) divider; };
    template<> struct dispatcher<uint64_t, ALGORITHM3> { CRASH_DIVIDER(uint64_t, u64) divider; };
    template<> struct dispatcher<uint64_t, ALGORITHM4> { CRASH_DIVIDER(uint64_t, u64) divider; };

    // Overloads that don't depend on the algorithm
    inline int32_t  recover(const libdivide_s32_t *s) { return libdivide_s32_recover(s); }
    inline uint32_t recover(const libdivide_u32_t *s) { return libdivide_u32_recover(s); }
    inline int64_t  recover(const libdivide_s64_t *s) { return libdivide_s64_recover(s); }
    inline uint64_t recover(const libdivide_u64_t *s) { return libdivide_u64_recover(s); }

    inline int32_t  recover(const libdivide_s32_branchfree_t *s) { return libdivide_s32_branchfree_recover(s); }
    inline uint32_t recover(const libdivide_u32_branchfree_t *s) { return libdivide_u32_branchfree_recover(s); }
    inline int64_t  recover(const libdivide_s64_branchfree_t *s) { return libdivide_s64_branchfree_recover(s); }
    inline uint64_t recover(const libdivide_u64_branchfree_t *s) { return libdivide_u64_branchfree_recover(s); }

    inline int get_algorithm(const libdivide_s32_t *s) { return libdivide_s32_get_algorithm(s); }
    inline int get_algorithm(const libdivide_u32_t *s) { return libdivide_u32_get_algorithm(s); }
    inline int get_algorithm(const libdivide_s64_t *s) { return libdivide_s64_get_algorithm(s); }
    inline int get_algorithm(const libdivide_u64_t *s) { return libdivide_u64_get_algorithm(s); }

    // Fallback for branchfree variants, which do not support unswitching
    template<typename T> int get_algorithm(const T *) { return -1; }
}

// This is the main divider class for use by the user (C++ API).
// The divider itself is stored in the div variable who's
// type is chosen by the dispatcher based on the template paramaters.
template<typename T, int ALGO = BRANCHFULL>
class divider
{
private:
    // Here's the actual divider
    typedef typename libdivide_internal::dispatcher<T, ALGO>::divider div_t;
    div_t div;

    // unswitch() friend declaration
    template<int NEW_ALGO, typename S>
    friend divider<S, NEW_ALGO> unswitch(const divider<S, BRANCHFULL> & d);

    // Constructor used by the unswitch friend
    divider(const div_t& denom) : div(denom) { }

public:
    // Ordinary constructor that takes the divisor as a parameter
    divider(T n) : div(n) { }

    // Default constructor. We leave this deliberately undefined so that
    // creating an array of divider and then initializing them
    // doesn't slow us down.
    divider() { }

    // Divides the parameter by the divisor, returning the quotient
    T perform_divide(T val) const {
        return div.perform_divide(val);
    }

    // Recovers the divisor that was used to initialize the divider
    T recover_divisor() const {
        return libdivide_internal::recover(&div.denom);
    }

#if defined(LIBDIVIDE_USE_SSE2)
    // Treats the vector as either two or four packed values (depending on the
    // size), and divides each of them by the divisor,
    // returning the packed quotients.
    __m128i perform_divide_vector(__m128i val) const {
        return div.perform_divide_vector(val);
    }
#endif

    // Returns the index of algorithm, for use in the unswitch function. Does
    // not apply to branchfree variant.
    // Returns the algorithm for unswitching.
    int get_algorithm() const {
        return libdivide_internal::get_algorithm(&div.denom);
    }

    bool operator==(const divider<T, ALGO>& him) const {
        return div.denom.magic == him.div.denom.magic &&
               div.denom.more == him.div.denom.more;
    }

    bool operator!=(const divider<T, ALGO>& him) const {
        return !(*this == him);
    }
};

#if __cplusplus >= 201103L || \
    (defined(_MSC_VER) && _MSC_VER >= 1800)

// libdivdie::branchfree_divider<T>
template <typename T>
using branchfree_divider = divider<T, BRANCHFREE>;

#endif

// Returns a divider specialized for the given algorithm
template<int NEW_ALGO, typename T>
divider<T, NEW_ALGO> unswitch(const divider<T, BRANCHFULL>& d) {
    return divider<T, NEW_ALGO>(d.div.denom);
}

// Overload of the / operator for scalar division
template<typename int_type, int ALGO>
int_type operator/(int_type numer, const divider<int_type, ALGO>& denom) {
    return denom.perform_divide(numer);
}

// Overload of the /= operator for scalar division
template<typename int_type, int ALGO>
int_type operator/=(int_type& numer, const divider<int_type, ALGO>& denom) {
    numer = denom.perform_divide(numer);
    return numer;
}

#if defined(LIBDIVIDE_USE_SSE2)

// Overload of the / operator for vector division
template<typename int_type, int ALGO>
__m128i operator/(__m128i numer, const divider<int_type, ALGO>& denom) {
    return denom.perform_divide_vector(numer);
}

// Overload of the /= operator for vector division
template<typename int_type, int ALGO>
__m128i operator/=(__m128i& numer, const divider<int_type, ALGO>& denom) {
    numer = denom.perform_divide_vector(numer);
    return numer;
}

#endif

} // namespace libdivide
} // anonymous namespace

#endif // __cplusplus

#endif // LIBDIVIDE_H



#ifndef LOCAL
#pragma GCC optimize ("O3")
#endif

#include <bits/stdc++.h>

using namespace std;

#define sim template < class c
#define ris return * this
#define dor > debug & operator <<
#define eni(x) sim > typename \
enable_if<sizeof dud<c>(0) x 1, debug&>::type operator<<(c i) {
sim > struct rge { c b, e; };
sim > rge<c> range(c i, c j) { return {i, j}; }
sim > auto dud(c* x) -> decltype(cerr << *x, 0);
sim > char dud(...);
struct debug {
#ifdef LOCAL
~debug() { cerr << endl; }
eni(!=) cerr << boolalpha << i; ris; }
eni(==) ris << range(begin(i), end(i)); }
sim, class b dor(pair < b, c > d) {
  ris << "(" << d.first << ", " << d.second << ")";
}
sim dor(rge<c> d) {
  *this << "[";
  for (c it = d.b; it != d.e; ++it)
    *this << ", " + 2 * (it == d.b) << *it;
  ris << "]";
}
#else
sim dor(const c&) { ris; }
#endif
};
#define imie(x...) " [" #x ": " << (x) << "] "

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
template <typename A, typename B>
using unordered_map2 = __gnu_pbds::gp_hash_table<A, B>;
using namespace __gnu_pbds;
template <typename T> using ordered_set =
  __gnu_pbds::tree<T, __gnu_pbds::null_type, less<T>, __gnu_pbds::rb_tree_tag,
                   __gnu_pbds::tree_order_statistics_node_update>;
// ordered_set<int> s; s.insert(1); s.insert(2);
// s.order_of_key(1);    // Out: 0.
// *s.find_by_order(1);  // Out: 2.

using ld = long double;
using ll = long long;

int mod = 1000 * 1000 * 1000 + 7;
libdivide::libdivide_u64_t fast_mod;

int Moduluj(uint64_t x) {
  return x - mod * libdivide::libdivide_u64_do(x, &fast_mod);
}

void OdejmijOd(int& a, int b) { a -= b; if (a < 0) a += mod; }
int Odejmij(int a, int b) { OdejmijOd(a, b); return a; }
void DodajDo(int& a, int b) { a += b; if (a >= mod) a -= mod; }
int Dodaj(int a, int b) { DodajDo(a, b); return a; }
int Mnoz(int a, int b) { return Moduluj(uint64_t(a) * b); }
void MnozDo(int& a, int b) { a = Mnoz(a, b); }
int Pot(int a, ll b) { int res = 1; while (b) { if (b % 2 == 1) MnozDo(res, a); a = Mnoz(a, a); b /= 2; } return res; }
int Odw(int a) { return Pot(a, mod - 2); }
void PodzielDo(int& a, int b) { MnozDo(a, Odw(b)); }
int Podziel(int a, int b) { return Mnoz(a, Odw(b)); }

template <typename T> T Maxi(T& a, T b) { return a = max(a, b); }
template <typename T> T Mini(T& a, T b) { return a = min(a, b); }

constexpr int nax = 1005;
constexpr int kax = 12;

vector<int> Pousuwaj(const vector<int>& v) {
  vector<int> res;
  const int n = (int) v.size();
  for (int i = 0; i < n; i++) {
    int ile = 0;
    if (i > 0 and v[i - 1] > v[i]) ile++;
    if (i + 1 < n and v[i + 1] > v[i]) ile++;
    if (ile == 0) {
      res.push_back(v[i]);
    }
  }
  return res;
}

int Licz(int ile, const vector<int>& v) {
  if (ile == 0) {
    if (v.empty()) return 0;
    if ((int) v.size() == 1) return 1;
    return Licz(0, Pousuwaj(v)) + 1;
  } else if (ile == 1) {
    assert(!v.empty());
    if ((int) v.size() == 1) return 0;
    return Licz(1, Pousuwaj(v)) + 1;
  } else if (ile == 2) {
    assert((int) v.size() >= 2);
    if ((int) v.size() == 2) return 0;
    return Licz(2, Pousuwaj(v)) + 1;
  } else {
    assert(false);
  }
}

int Brut(int n, int k, int lewo, int prawo) {
  const int ile = lewo + prawo;
  vector<int> v(n);
  iota(v.begin(), v.end(), 0);
  int a = 0, b = n;
  if (ile == 0) {
    // nic.
  } else if (ile == 1) {
    v.push_back(numeric_limits<int>::max());
  } else if (ile == 2) {
    v.insert(v.begin(), numeric_limits<int>::max());
    v.push_back(numeric_limits<int>::max() - 1);
    a++;
    b++;
  } else {
    assert(false);
  }
  int wyn = 0;
  map<int, int> licz;
  do {
    //if (n == 3 and k == 2) debug() << imie(v);
    if (Licz(ile, v) == k) {
      if (n == 6 and k == 3 and lewo and !prawo) {
        licz[max_element(v.begin() + a, v.begin() + b) - v.begin()]++;
      }
      wyn++;
    }
  } while (next_permutation(v.begin() + a, v.begin() + b));
  if (n == 6 and k == 3 and lewo and !prawo) {
    debug() << imie(n) imie(k) imie(lewo) imie(prawo) imie(licz);
  }
  return Moduluj(wyn);
}

int C[nax][nax];

int Dp(int n, int k, int lewo, int prawo);
int Pref(int n, int k, int lewo, int prawo);

int Pref_(int n, int k, int lewo, int prawo) {
  return Dodaj(Dp(n, k, lewo, prawo), Pref(n, k - 1, lewo, prawo));
}
int Pref(int n, int k, int lewo, int prawo) {
  if (n < 0 or k < 0) return 0;
  if (lewo > prawo) swap(lewo, prawo);
  static int dp[nax][kax][2][2];
  static bool juz[nax][kax][2][2];
  if (juz[n][k][lewo][prawo]) {
    return dp[n][k][lewo][prawo];
  }
  juz[n][k][lewo][prawo] = true;
  return dp[n][k][lewo][prawo] = Pref_(n, k, lewo, prawo);
}

int Dp_(int n, int k, int lewo, int prawo) {
  if (n == 0) {
    return k == 0;
  }
  if (n == 1) {
    return k == 1;
  }
  int res = 0;
  if (lewo) {
    DodajDo(res, Dp(n - 1, k, 1, prawo));
  } else {
    DodajDo(res, Dp(n - 1, k - 1, 1, prawo));
  }
  if (prawo) {
    DodajDo(res, Dp(n - 1, k, lewo, 1));
  } else {
    DodajDo(res, Dp(n - 1, k - 1, lewo, 1));
  }
  for (int i = 2; i < n; i++) {
    const int a = i - 1;
    const int b = n - i;
    int ile = 0;
    if (lewo == 0 and prawo == 0) {
      DodajDo(ile, Mnoz(Dp(a, k - 1, lewo, 1), Pref(b, k - 1, 1, prawo)));
      DodajDo(ile, Mnoz(Pref(a, k - 1, lewo, 1), Dp(b, k - 1, 1, prawo)));
      OdejmijOd(ile, Mnoz(Dp(a, k - 1, lewo, 1), Dp(b, k - 1, 1, prawo)));
    } else if (lewo == 1 and prawo == 1) {
      DodajDo(ile, Mnoz(Dp(a, k - 1, lewo, 1), Dp(b, k - 1, 1, prawo)));
      DodajDo(ile, Mnoz(Dp(a, k, lewo, 1), Pref(b, k - 1, 1, prawo)));
      DodajDo(ile, Mnoz(Pref(a, k - 1, lewo, 1), Dp(b, k, 1, prawo)));
    } else if (lewo == 1) {
      DodajDo(ile, Mnoz(Dp(a, k - 1, lewo, 1), Pref(b, k, 1, prawo)));
      DodajDo(ile, Mnoz(Pref(a, k - 2, lewo, 1), Dp(b, k, 1, prawo)));
    } else if (prawo == 1) {
      DodajDo(ile, Mnoz(Pref(a, k, lewo, 1), Dp(b, k - 1, 1, prawo)));
      DodajDo(ile, Mnoz(Dp(a, k, lewo, 1), Pref(b, k - 2, 1, prawo)));
    } else {
      assert(false);
    }
//    DodajDo(ile, Mnoz(Dp(a, k - 1, lewo, 1), Pref(b, k - 1, 1, prawo)));
//    DodajDo(ile, Mnoz(Pref(a, k - 1, lewo, 1), Dp(b, k - 1, 1, prawo)));
//    OdejmijOd(ile, Mnoz(Dp(a, k - 1, lewo, 1), Dp(b, k - 1, 1, prawo)));
//    debug() << imie(a) imie(b) imie(lewo) imie(prawo);
//    debug() << imie(Dp(a, k - 1, lewo, 1)) imie(Pref(a, k - 1, lewo, 1));
//    debug() << imie(Dp(b, k - 1, 1, prawo)) imie(Pref(b, k - 1, 1, prawo));
//    debug() << imie(ile) imie(C[a + b][a]);
    DodajDo(res, Mnoz(ile, C[a + b][a]));
  }
  debug() << "Dp(" imie(n) imie(k) imie(lewo) imie(prawo) ") = " << res;
  #ifdef LOCAL
//  const int b = Brut(n, k, lewo, prawo);
//  if (b != res) {
//    debug() << imie(res) imie(b);
//    assert(false);
//  }
  #endif
  return res;
}
int Dp(int n, int k, int lewo, int prawo) {
  if (n < 0 or k < 0) return 0;
  if (lewo > prawo) swap(lewo, prawo);
  static int tab[nax][kax][2][2];
  static bool juz[nax][kax][2][2];
  if (juz[n][k][lewo][prawo]) {
    return tab[n][k][lewo][prawo];
  }
  juz[n][k][lewo][prawo] = true;
  return tab[n][k][lewo][prawo] = Dp_(n, k, lewo, prawo);
}

int Daj(int n, int k) {
  if (!(1 <= n and n < nax and 1 <= k and k + 1 < kax)) return 0;
  const int res = Dp(n, k + 1, 0, 0);
  assert(res >= 0);
  return res;
}

int main() {
  ios_base::sync_with_stdio(0);
  cin.tie(0);

  int n, k;
  cin >> n >> k >> mod;
  fast_mod = libdivide::libdivide_u64_gen(mod);

  for (int A = 0; A < nax; A++) {
    C[A][0] = C[A][A] = 1;
    for (int B = 1; B < A; B++) {
      C[A][B] = Dodaj(C[A - 1][B - 1], C[A - 1][B]);
    }
  }
  cout << Daj(n, k) << endl;
//  while (cin >> n >> k) {
//    cout << Daj(n, k) << endl;
//  }

//  int suma = 0;
//  for (n = 1; n <= 1000; n++) {
//    for (k = 1; k <= n; k++) {
//      DodajDo(suma, Mnoz(Mnoz(n, k), Daj(n, k)));
//    }
//  }
//  cout << suma << endl;
//  // wynik: 59180009

//  for (int n = 0; n <= 10; n++) {
//    for (int k = 0; k <= n; k++) {
//      Dp(n, k, 0, 0);
//    }
//  }

//  printf("[n = %2d]:", n_);
//  for (int i = 0; i <= n_; i++) {
//    printf(" %7d", Dp(n_, i, 0, 0));
//  }
//  printf("\n");
  return 0;
}